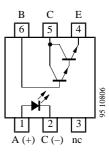
4N32/ 4N33 VishaySemiconductors

Optocoupler with Photodarlington Output

Description

The 4N32 and 4N33 consist of a photodarlington optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package. The elements are mounted on one leadframe using a **coplanar technique**, providing a fixed distance between input and output for highest safety requirements.


Applications

Galvanically separated circuits, non-interacting switches

Features

- High isolation resistance
- Underwriters Laboratory (UL) 1577 recognized, file number E-76222
- Low coupling capacity typical 0.3 pF
- High Current Transfer Ratio (CTR)
- Low temperature coefficient of CTR
- Coupling System A

71

Order Instruction

Ordering Code	CTR Ranking	Remarks
4N32	> 500%	
4N33	> 500%	

Vishay Semiconductors

Absolute Maximum Ratings

Input (Emitter)

Parameter	Test Conditions	Symbol	Value	Unit
Reverse voltage		V _R	6	V
Forward current		١ _F	60	mA
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	A
Power dissipation	T _{amb} ≤ 25°C	P _V	100	mW
Junction temperature		Ti	125	°C

Output (Detector)

Parameter	Test Conditions	Symbol	Value	Unit
Collector base voltage		V _{CBO}	50	V
Collector emitter voltage		V _{CEO}	30	V
Emitter collector voltage		V _{ECO}	5	V
Collector current		Ι _C	150	mA
Peak collector current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	200	mA
Power dissipation	$T_{amb} \le 25^{\circ}C$	Pv	150	mW
Junction temperature		T _j	125	°C

Coupler

Parameter	Test Conditions	Symbol	Value	Unit
Isolation test voltage (RMS)	t = 1 min	V _{IO}	3.75	kV
Total power dissipation	$T_{amb} \le 25^{\circ}C$	P _{tot}	250	mW
Ambient temperature range		T _{amb}	-55 to +100	°C
Storage temperature range		T _{stg}	-55 to +125	°C
Soldering temperature	2 mm from case, t \leq 10 s	T _{sd}	260	°C

Electrical Characteristics ($T_{amb} = 25^{\circ}C$)

Input (Emitter)

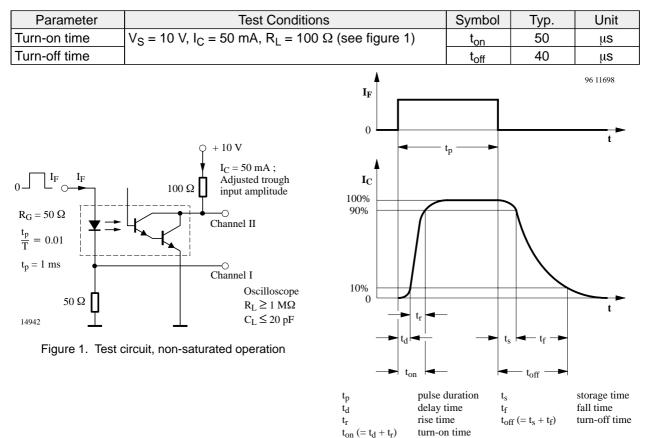
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	I _F = 50 mA	VF		1.25	1.5	V
Junction capacitance	V _R = 0, f = 1 MHz	Ci		50		pF

Output (Detector)

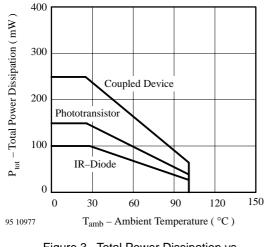
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector base voltage	I _C = 100 μA	V _{CBO}	50			V
Collector emitter voltage	I _C = 1mA	V _{CEO}	30			V
Emitter collector voltage	I _C = 100 μA	V _{ECO}	5			V
Collector dark current	$V_{CE} = 10 \text{ V}, I_F = 0, E = 0$	I _{CEO}			100	nA

Coupler

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Isolation test voltage (RMS)	f = 50 Hz, t = 2 s	V _{IO} ¹⁾	3.75			kV
Isolation resistance	V _{IO} = 1000 V, 40% relative humidity	R _{IO} ¹⁾		10 ¹²		Ω
Collector emitter saturation voltage	$I_F = 8 \text{ mA}, I_C = 2 \text{ mA}$	V _{CEsat}			1	V
Cut-off frequency	$I_F = 2 \text{ mA}, V_{CE} = 10 \text{ V}, R_L = 100 \Omega$	f _c		30		kHz
Coupling capacitance	f = 1 MHz	Ck		0.3		pF
1) Related to standard clin	nate23/50 DIN 50014					


Current Transfer Ratio (CTR)

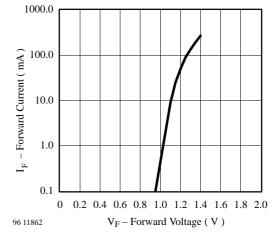
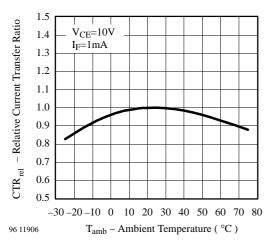
Parameter	Test Conditions	Туре	Symbol	Min.	Тур.	Max.	Unit
I _C /I _F	V _{CE} = 10 V, I _F = 10 mA,	4N32, 4N33	CTR	5			
	t _p /T = 0.01, t _p = 0.3 ms						


Vishay Semiconductors



Switching Characteristics

Typical Characteristics (T_{amb} = 25°C, unless otherwise specified)

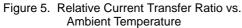

Figure 2. Switching times

Figure 4. Forward Current vs. Forward Voltage

4N32/4N33 Vishay Semiconductors

VISHA

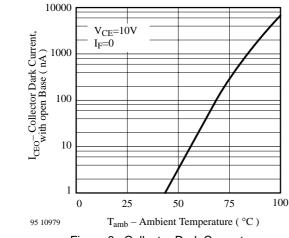


Figure 7. Collector Base Current vs. Forward Current

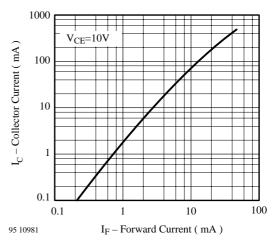


Figure 8. Collector Current vs. Forward Current

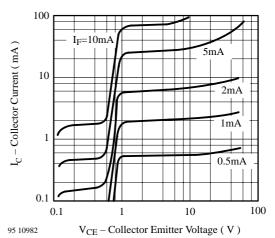


Figure 9. Collector Current vs. Collector Emitter Voltage

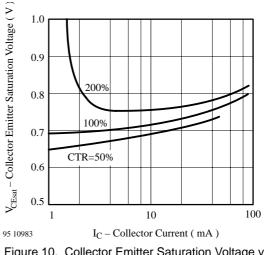


Figure 10. Collector Emitter Saturation Voltage vs. Collector Current

4N32/4N33

Vishay Semiconductors

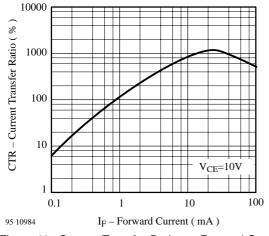


Figure 11. Current Transfer Ratio vs. Forward Current

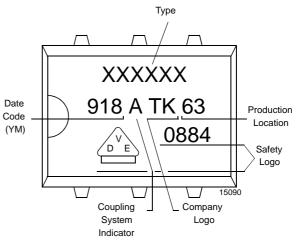
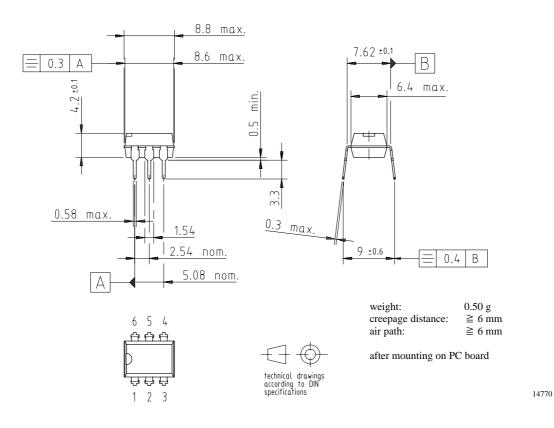



Figure 12. Marking example

Dimensions of 4N32/ 4N33 in mm

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423