XPower

PRELIMINARY SPEC

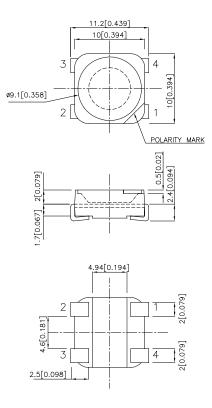
ATTENTION
OBSERVE PRECAUTIONS
FOR HANDLING
ELECTROSTATIC
DISCHARGE
SENSITIVE

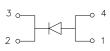
DEVICES

Features

- PLCC-4 PACKAGE.
- SINGLE COLOR.
- HIGH LUMINANCE.
- HIGH POWER, OPERATING CURRENT @350mA.
- SUITABLE FOR ALL SMT ASSEMBLY METHODS.
- PACKAGE: 500PCS / REEL.
- MOISTURE SENSITIVITY LEVEL: LEVEL 6.
- PATENT PENDING.
- ELECTROSTATIC DISCHARGE THRESHOLD (HBM):2000V.
- TYP. COLOR TEMPERATURE:6500K.
- COLOR COORDINATES:X=0.33,Y=0.34 ACC. TO CIE1931(WHITE).
- OPTICAL EFFICIENCY:29.2 lm/W(TYP.)
- COLOR REPRODUCTION INDEX:80.
- RoHS COMPLIANT.

Part Number: AA1010RWC9


White



Description

The LED is encapsulated with a soft silicone material.

Package Dimensions

Notes:

- All dimensions are in millimeters (inches).
- 2. Tolerance is $\pm 0.25(0.01")$ unless otherwise noted. 3. Specifications are subject to change without notice.

SPEC NO: DSAG5950 REV NO: V.3
APPROVED: J. Lu CHECKED: Allen Liu

DATE:SEP/27/2006 PAGE: 1 OF 8
DRAWN: Y.L.LI ERP: 1201001613

Applications

- traffic signaling.
- backlighting (illuminated advertising, general lighting).
- interior and exterior automotive lighting.
- substitution of micro incandescent lamps.
- portable light source (e.g. bicycle flashlight).
- signal and symbol luminaire for orientation.
- marker lights (e.g. steps, exit ways, etc).
- decorative and entertainment lighting.
- indoor and outdoor commercial and residential architectural lighting.

Application Notes

- Pressure or stress can damage the encapsulating material and affect the reliability of the LED. Precaution should be taken to avoid pressure on the LED encapsulating surface.
- Static electricity and surge damage the LEDS.
 It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs.
 All devices, equipment and machinery must be electrically grounded.
- Handling Indications

Use proper handling techniques to prevent damage to the LED surface. Minimize mechanical stress on the LED surface during processing and handling. Do not touch the emitting surface with sharp objects to avoid scratching or damaging the LED.

In general, LEDs should be handled by the sides of the package. Handling instruments should not touch the emitting surface of the LED package.

Figure 2

For automated pick-and-place machines, the pickup nozzle should be larger than the size of the LED reflector area to avoid placing excess pressure on the LED surface.

 SPEC NO: DSAG5950
 REV NO: V.3
 DATE:SEP/27/2006
 PAGE: 2 OF 8

 APPROVED: J. Lu
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1201001613

Selection Guide

Part No.	Dice	Lens Type	luminous Intensity Note2 Iv(cd) @ 350mA		Фv (lm) ^{Note3} @ 350mA	Viewing Angle Note1
			Min.	Тур.	Тур.	201/2
AA1010RWC9	WHITE (InGaN)	WATER CLEAR	8	12	34.7	120°

Absolute Maximum Ratings at TA=25°C

Parameter	Symbol	Value	Unit
Power dissipation	Pt	1.2	W
Reverse Voltage	VR	5	V
Junction temperature	TJ	110	°C
Operating Temperature	Тор	-40 To +85	°C
Storage Temperature	Tstg	-40 To +85	°C
DC Forward Current	lF	350	mA
Peak Forward Current Note4	IFM	500	mA
Thermal resistance Junction/ambient Note5 Junction/solder point	Rth JA Rth JS	60 10	°C/W °C/W

Notes:

- 1.01/2 is the angle from optical centerline where the luminous intensity is 1/2 the optical centerline value.
- 2.Luminous intensity is measured by a current pulse of 10ms at a tolerance of ±15%.
- 3.The typical data of Luminous Flux can only reflect statistical figures, actual parameters of individual product could differ from the typical data. For the purpose of product enhancement, the typical data is subject to change without prior notice.
- 4.1/10 Duty Cycle, 0.1ms Pulse Width.
 5.Rth(J-A) Results from mounting on PC board FR4 (pad size ≥100 mm² per pad),

Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Value	Unit
Chromaticity coordinate x acc.to CIE1931 IF=350mA [Typ.]	X Note1	0.33	-
Chromaticity coordinate y acc.to CIE1931 IF=350mA [Typ.]	Y Note1	0.34	-
Viewing angle at $50\%\Phi \lor$ [Typ.]	θ	120	0
Forward Voltage IF=350mA [Min.]		3.0	
Forward Voltage IF=350mA [Typ.]	V _F Note2	3.4	V
Forward Voltage IF=350mA [Max.]		3.9	
Reverse Current (VR=5V) [Typ.]	l _R	0.01	^
Reverse Current (VR=5V) [Max.]	T IR	10	μΑ
Temperature coefficient of x IF=350mA, -10° C \leq T \leq 100 $^{\circ}$ C [Typ.]	TCx	-0.2	10 ⁻³ /°C
Temperature coefficient of y IF=350mA, -10°C≤ T≤100°C [Typ.]	TCy	-0.1	10 ⁻³ /°C
Temperature coefficient of VF IF=350mA, -10°C≤ T≤100°C [Typ.]	TCv	-2.2	mV/°C

Notes

1.Chromaticity coordinates are measured by a current pulse of 20ms with a tolerance of ±0.01 in X and Y color coordinates.

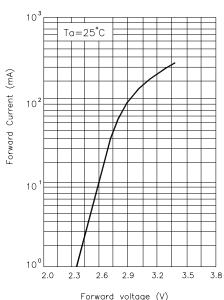
2. Forward voltage is measured with a current pulse of 10ms at a tolerance of \pm 0.1 V.

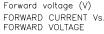
 SPEC NO: DSAG5950
 REV NO: V.3
 DATE:SEP/27/2006
 PAGE: 3 OF 8

 APPROVED: J. Lu
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1201001613

Brightness codes

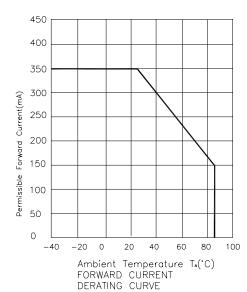
	Фv (Im) ^{Note2} @ 350mA		
Code.	Min.	Max.	Тур.
ZH	8	12	28.5
ZM	10	16	34.2
ZN	12	20	39.1

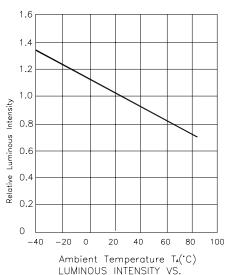

- Notes:

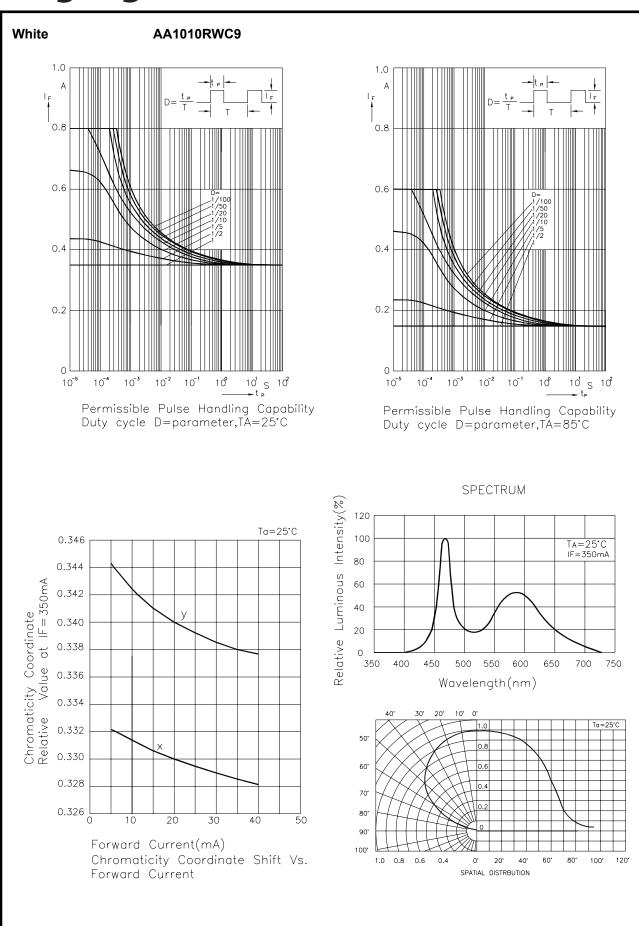

 1.Luminous intensity is measured by a current pulse of 10ms at a tolerance of ±15%.

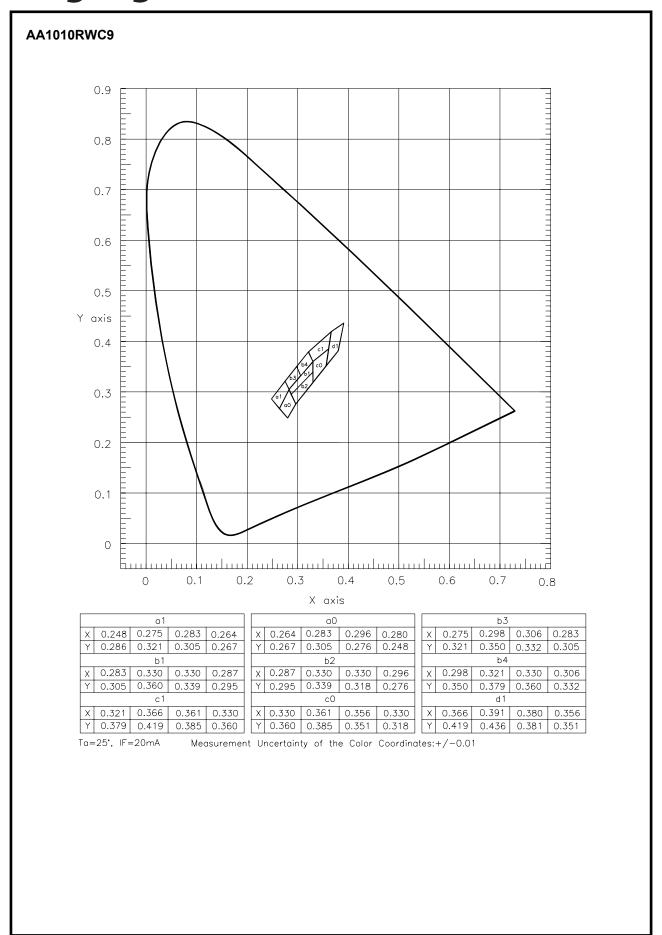
 2.The typical data of Luminous Flux can only reflect statistical figures, actual parameters of individual product could differ from the typical data. For the purpose of product enhancement, the typical data is subject to change without prior notice.

White


AA1010RWC9



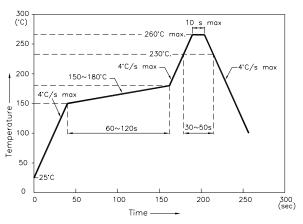

Forward current (mA) LUMINOUS INTENSITY V FORWARD CURRENT


LUMINOUS INTENSITY VS. AMBIENT TEMPERATURE

SPEC NO: DSAG5950 **REV NO: V.3** DATE:SEP/27/2006 PAGE: 4 OF 8 APPROVED: J. Lu CHECKED: Allen Liu DRAWN: Y.L.LI ERP: 1201001613

 SPEC NO: DSAG5950
 REV NO: V.3
 DATE:SEP/27/2006
 PAGE: 5 OF 8

 APPROVED: J. Lu
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1201001613

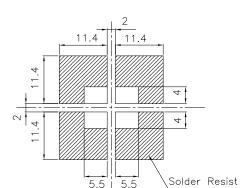


 SPEC NO: DSAG5950
 REV NO: V.3
 DATE:SEP/27/2006
 PAGE: 6 OF 8

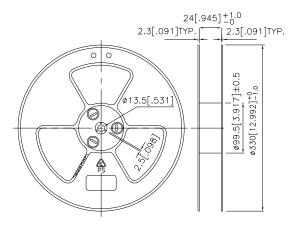
 APPROVED: J. Lu
 CHECKED: Allen Liu
 DRAWN: Y.L.LI
 ERP: 1201001613

AA1010RWC9

Reflow Soldering Profile For Lead-free SMT Process.

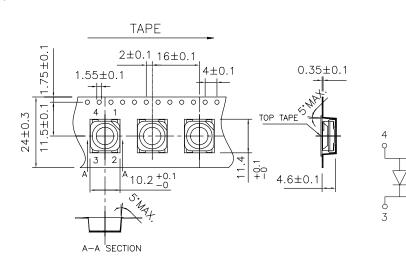


NOTES:

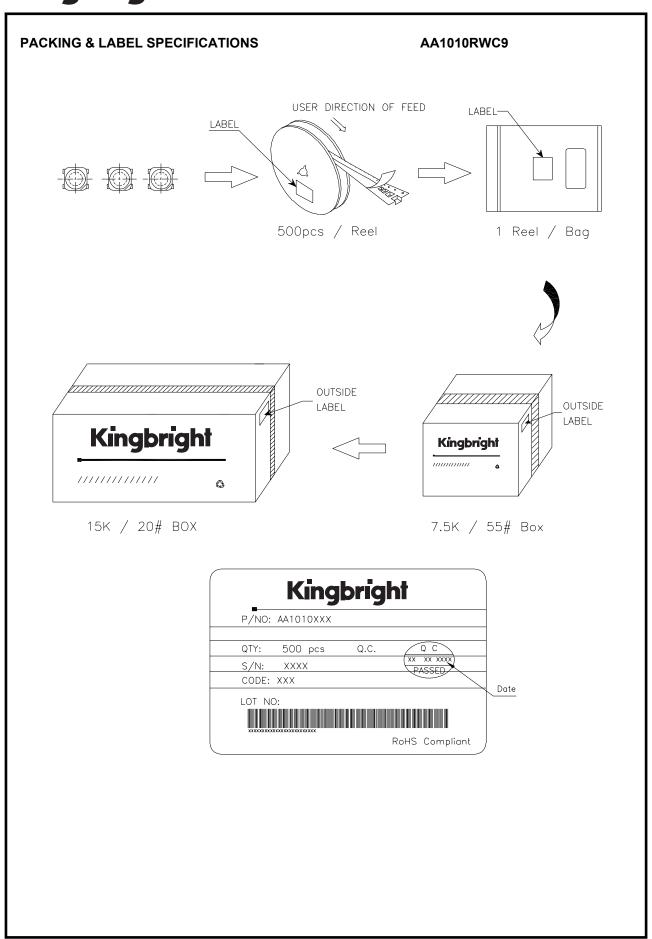

- 1.We recommend the reflow temperature 245°C(+/-5°C).The maximum soldering temperature should be limited to 260°C.
- 2.Don't cause stress to the epoxy resin while it is exposed to high temperature.
- 3. Number of reflow process shall be 2 times or less.

Recommended Soldering Pattern

(Units: mm; Tolerance: ± 0.1)



Reel Dimension



Tape Specifications

(Units: mm)

SPEC NO: DSAG5950 APPROVED: J. Lu REV NO: V.3 CHECKED: Allen Liu DATE:SEP/27/2006 DRAWN: Y.L.LI PAGE: 7 OF 8 ERP: 1201001613

SPEC NO: DSAG5950 APPROVED: J. Lu REV NO: V.3 CHECKED: Allen Liu DATE:SEP/27/2006 DRAWN: Y.L.LI PAGE: 8 OF 8 ERP: 1201001613