"Full Bridge" IGBT MTP (Ultrafast NPT IGBT), 40 A

MTP

PRODUCT SUMMARY

$\mathrm{V}_{\text {CES }}$	1200 V
I_{C} at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	40 A
$\mathrm{~V}_{\mathrm{CE} \text { (on) }}$	3.29 V

FEATURES

- Ultrafast Non Punch Through (NPT) technology
- Positive $\mathrm{V}_{\mathrm{CE}(o n)}$ temperature coefficient
- $10 \mu \mathrm{~s}$ short circuit capability

RoHS COMPLANT

- HEXFRED ${ }^{\circledR}$ antiparallel diodes with ultrasoft reverse recovery
- Low diode V_{F}
- Square RBSOA
- Aluminum nitride DBC
- Very low stray inductance design for high speed operation
- UL approved file E78996 FI
- Speed 8 kHz to 60 kHz
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

BENEFITS

- Optimized for welding, UPS and SMPS applications
- Rugged with ultrafast performance
- Outstanding ZVS and hard switching operation
- Low EMI, requires less snubbing
- Excellent current sharing in parallel operation
- Direct mounting to heatsink
- PCB solderable terminals
- Very low junction to case thermal resistance

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Collector to emitter breakdown voltage	$\mathrm{V}_{\text {CES }}$		1200	V
Continuous collector current	Ic	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	40	A
		$\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	20	
Pulsed collector current	$\mathrm{I}_{\text {CM }}$		100	
Clamped inductive load current	ILM		100	
Diode continuous forward current	I_{F}	$\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	25	
Diode maximum forward current	$\mathrm{I}_{\text {FM }}$		100	
Gate to emitter voltage	V_{GE}		± 20	
RMS isolation voltage	$\mathrm{V}_{\text {ISOL }}$	Any terminal to case, $\mathrm{t}=1$ minute	2500	
Maximum power dissipation (only IGBT)	$P_{\text {D }}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	240	W
		$\mathrm{T}_{\mathrm{C}}=10{ }^{\circ} \mathrm{C}$	96	

Vishay High Power Products "Full Bridge" IGBT MTP (Ultrafast NPT IGBT), 40 A

ELECTRICAL SPECIFICATIONS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	$\mathrm{V}_{\text {(BR)CES }}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}$	1200	-	-	V
Temperature coefficient of breakdown voltage	$\Delta \mathrm{V}_{(\mathrm{BR}) \mathrm{CES}} / \Delta \mathrm{T}_{J}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\left(25^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	-	+ 1.3	-	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
Collector to emitter saturation voltage	$\mathrm{V}_{\text {CE(on) }}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}$	-	3.29	3.59	V
		$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$	-	4.42	4.66	
		$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	3.87	4.11	
		$V_{G E}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	-	5.32	5.70	
		$V_{G E}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$	-	3.99	4.27	
Gate threshold voltage	$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{V}_{\text {CE }}=\mathrm{V}_{\mathrm{GE}}, \mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}$	4	-	6	
Temperature coefficient of threshold voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{th})} / \Delta \mathrm{T}_{\mathrm{J}}$	$\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\left(25^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$	-	-14	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Transconductance	g_{f}	$\mathrm{V}_{\text {CE }}=50 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{PW}=80 \mu \mathrm{~s}$	-	17.5	-	S
Zero gate voltage collector current	$\mathrm{ICES}^{(1)}$	$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
		$V_{G E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}$	-	0.7	3.0	mA
		$\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE}}=1200 \mathrm{~V}, \mathrm{~T}_{J}=150^{\circ} \mathrm{C}$	-	2.9	9.0	
Gate to emitter leakage current	$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$	-	-	± 250	nA

Note

${ }^{(1)} I_{\text {CES }}$ includes also opposite leg overall leakage

SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{J}=25{ }^{\circ} \mathrm{C}\right.$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Q_{g}	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V} \end{aligned}$	-	176	264	nC
Gate to emitter charge (turn-on)	$Q_{\text {ge }}$		-	19	30	
Gate to collector charge (turn-on)	Q_{gc}		-	89	134	
Turn-on switching loss	$\mathrm{E}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{g}}=5 \Omega, \mathrm{~L}=1 \mathrm{mH}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \end{aligned}$ energy losses include tail and diode reverse recovery	-	0.92	-	mJ
Turn-off switching loss	E off		-	0.46	-	
Total switching loss	$E_{\text {tot }}$		-	1.38	-	
Turn-on switching loss	$\mathrm{E}_{\text {on }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{g}}=5 \Omega, \mathrm{~L}=1 \mathrm{mH}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}, \end{aligned}$ energy losses include tail and diode reverse recovery	-	1.29	-	
Turn-off switching loss	$E_{\text {off }}$		-	0.81	-	
Total switching loss	$E_{\text {tot }}$		-	2.1	-	
Input capacitance	$\mathrm{C}_{\text {ies }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V} \\ & \mathrm{f}=1.0 \mathrm{MHz} \end{aligned}$	-	2530	3790	pF
Output capacitance	$\mathrm{C}_{\text {oes }}$		-	344	516	
Reverse transfer capacitance	$\mathrm{C}_{\text {res }}$		-	78	117	
Reverse bias safe operating area	RBSOA	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}}=120 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=1000 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}}=1200 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=5 \Omega, \mathrm{~V}_{\mathrm{GE}}=+15 \mathrm{~V} \text { to } 0 \mathrm{~V} \end{aligned}$	Fullsquare			
Short circuit safe operating area	SCSOA	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=900 \mathrm{~V}, \mathrm{~V}_{\mathrm{p}}=1200 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{g}}=5 \Omega, \mathrm{~V}_{\mathrm{GE}}=+15 \mathrm{~V} \text { to } 0 \mathrm{~V} \end{aligned}$	10	-	-	$\mu \mathrm{s}$

"Full Bridge" IGBT MTP Vishay High Power Products (Ultrafast NPT IGBT), 40 A

DIODE SPECIFICATIONS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Diode forward voltage drop	$V_{\text {FM }}$	$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}$	-	2.48	2.94	V
		$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}$	-	3.28	3.90	
		$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	2.44	2.84	
		$\mathrm{I}_{\mathrm{C}}=40 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	-	3.45	4.14	
		$\mathrm{I}_{\mathrm{C}}=20 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	2.21	2.93	
Reverse recovery energy of the diode	$\mathrm{E}_{\text {rec }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=5 \Omega, \mathrm{~L}=200 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CC}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{J}}=125^{\circ} \mathrm{C} \end{aligned}$	-	420	630	$\mu \mathrm{J}$
Diode reverse recovery time	t_{rr}		-	98	150	ns
Peak reverse recovery current	$\mathrm{Irr}_{\text {r }}$		-	33	50	A

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating junction temperature range	T_{J}		-40	-	150	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {Stg }}$		-40	-	125	
Junction to case \quadIGBT Diode	$\mathrm{R}_{\text {thJc }}$		-	0.35	0.52	${ }^{\circ} \mathrm{C} / \mathrm{W}$
			-	0.40	0.61	
Case to sink per module	$\mathrm{R}_{\text {thcs }}$	Heatsink compound thermal conductivity $=1 \mathrm{~W} / \mathrm{mK}$	-	0.06	-	
Clearance		External shortest distance in air between 2 terminals	5.5	-	-	mm
Creepage		Shortest distance along external surface of the insulating material between 2 terminals	8	-	-	
Mounting torque		A mounting compound is recommended and the torque should be checked after 3 hours to allow for the spread of the compound. Lubricated threads.	$3 \pm 10 \%$			Nm
Weight			66			g

Fig. 1 - Maximum DC Collector Current vs. Case Temperature

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 3 - Forward SOA
$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}} \leq 150^{\circ} \mathrm{C}$

Fig. 4 - Reverse Bias SOA $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

Fig. 5 - Typical IGBT Output Characteristics
$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=80 \mu \mathrm{~s}$

Fig. 6 - Typical IGBT Output Characteristics $\mathrm{T}_{J}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=80 \mu \mathrm{~s}$
"Full Bridge" IGBT MTP Vishay High Power Products (Ultrafast NPT IGBT), 40 A

Fig. 7 - Typical IGBT Output Characteristics $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{p}}=80 \mu \mathrm{~s}$

Fig. 8 - Typical Diode Forward Characteristics $\mathrm{t}_{\mathrm{p}}=80 \mu \mathrm{~s}$

Fig. 9 - Typical V_{CE} vs. V_{GE}

$$
\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}
$$

Fig. 10-Typical V_{CE} vs. V_{GE} $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$

Fig. 11 - Typical V_{CE} vs. V_{GE} $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$

Fig. 12 - Typical Transfer Characteristics
$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V} ; \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s}$

Vishay High Power Products $\begin{gathered}\text { "Full Bridge" IGBT MTP } \\ \text { (Ultrafast NPT IGBT), } 40 \text { A }\end{gathered}$

Fig. 13 - Typical Energy Loss vs. IC $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C} ; \mathrm{L}=1 \mathrm{mH} ; \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}$ $\mathrm{R}_{\mathrm{g}}=5 \Omega ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

Fig. 14 - Typical Switching Time vs. IC $\mathrm{T}_{J}=125^{\circ} \mathrm{C} ; \mathrm{L}=1 \mathrm{mH} ; \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}$ $\mathrm{R}_{\mathrm{g}}=5 \Omega ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

Fig. 15 - Typical Energy Loss vs. R_{g} $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C} ; \mathrm{L}=1 \mathrm{mH} ; \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}$ $\mathrm{I}_{\mathrm{CE}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

Fig. 16 - Typical Switching Time vs. R_{g} $\mathrm{T}_{J}=150^{\circ} \mathrm{C} ; \mathrm{L}=1 \mathrm{mH} ; \mathrm{V}_{\mathrm{CC}}=600 \mathrm{~V}$ $\mathrm{I}_{\mathrm{CE}}=6 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

Fig. 17 - Typical Diode $I_{r r}$ vs. I_{F} $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$

Fig. 18 - Typical Diode I_{rr} vs. R_{g} $\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~A}$

"Full Bridge" IGBT MTP Vishay High Power Products (Ultrafast NPT IGBT), 40 A

Fig. 19 - Typical Diode $I_{r r}$ vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ $\mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{I}_{\mathrm{CE}}=5.0 \mathrm{~A} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$

Fig. 20 - Typical Diode Q_{rr} vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$ $V_{C C}=400 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$

Fig. 21 - Typical Capacitance vs. V_{CE} $\mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$

Fig. 22 - Typical Gate Charge vs. V_{GE} $I_{C E}=5.0 \mathrm{~A} ; \mathrm{L}=600 \mu \mathrm{H}$

Fig. 23 - Maximum Transient Thermal Impedance, Junction to Case (IGBT)

Vishay High Power Products "Full Bridge" IGBT MTP (Ultrafast NPT IGBT), 40 A

Fig. 24 - Maximum Transient Thermal Impedance, Junction to Case (Diode)

Fig. CT. 1 - Gate Charge Circuit (Turn-Off)

Fig. CT. 2 - RBSOA Circuit

Fig. CT. 3 - S.C. SOA Circuit

Fig. CT. 4 - Switching Loss Circuit

"Full Bridge" IGBT MTP Vishay High Power Products

 (Ultrafast NPT IGBT), 40 A

Fig. 25 - Electrical diagram

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS

MTP MOSFET/IGBT Full-Bridge

DIMENSIONS in millimeters

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

