Briendinine Bring temperatues under control Thermal Protectors - Standard Products

Bringstemperatures under control Thermal Protectors - Standard Products

Ordering example										
	$\underbrace{}_{\substack{\text { Autumatic esesting, } \\ \text { with omection eads }}}$	Autumatic resting, with cometion leads	Automatic resetting, with two solid non insulate vertical or horizontal orizonta	Automatic resetting with connection and connection leads	Automatic resetting single / or on tape for automated further proce \qquad	Fully automated production single / or on tape mounting on PCBs	Automatic resetting fully automated production with connection leads	Automatic resetting defined current sensitive by an with connection leads		Electrical-self-hold-functionality defined current sensitive by an with connection leads
Thermal Pretedors weth insultion cap	${ }^{1}$		N01	L01/02	um1	PM1		${ }_{\text {cz1 }}^{\text {c21 }}$ S21		${ }_{\text {c }}^{\text {cW1 } / \text { SW1 }}$
	with eopxy coating	${ }^{\text {col } 1 / \mathrm{K} 11 / \mathrm{CO2}}$			UM1	PM1	${ }_{\text {cm1 }}$	${ }_{C 21}^{521}$	${ }_{61}{ }^{\text {P1 }}$	${ }_{\text {cW1 }}$
1 Contatt tye, nommaly closed nomatly open	${ }^{\text {Nc }}$	Nc/ /No	Nc/ No	Nc/ No	NC	NC	NC		NC	
	${ }^{70}{ }^{\circ} \mathrm{C}, 160^{\circ} \mathrm{C}$	${ }^{60}{ }^{\circ} \mathrm{C}$ - $200{ }^{\circ} \mathrm{C}$	${ }_{\text {co }}{ }^{\circ 0^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}}$	$6^{60} \mathrm{C}-20{ }^{\circ} \mathrm{C}$	${ }^{70}{ }^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	${ }^{70}{ }^{\circ} \mathrm{C}-18{ }^{\circ} \mathrm{C}$	${ }^{700^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}}$	$70^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-160^{\circ} \mathrm{C}$
	$\underset{\sim}{ \pm 55^{\circ} \mathrm{C}}$	${ }_{.} .55 \mathrm{Sk}$ K 15 K			${ }_{.35 \mathrm{Sk}}^{ \pm 15 \mathrm{~K}}$		${ }_{.} 55 \mathrm{SK} \times 15 \mathrm{~K}$			
$\frac{5}{5}$					upi soov-		Ufi 500v-			
		${ }^{205}$	25A /10,000	25A /10,000	25A 1 10,000	${ }^{250 V}$				
Rated durenent $A \cos \varphi=1.0$ (ohmic load/ / /witcting ycles			6.3 AA .3000 75 A .300	$6.3 \mathrm{~A}, 3.000$ 15 A .300	6.3A/ 3.000	6.3A/3.000	6.3A/3.000	/3,000	1.000	oa/
	1.6A/10.000	${ }^{1.6 A / 12.000}$	1.6A 11.0.00	${ }^{1.6 A A 10.000}$	1.6A /10.000	1.6A 110,000	1.6A110.000	1.6A 110.000	6.3A1/1.000	1.6A1.1.00
			$\xrightarrow{1.8 \text { AA } 11.0000}$		${ }_{\text {L }}^{1.8 \text { AA } 110,000}$	${ }_{\text {L }}^{1.8 \text { AAA } 11.0000}$	${ }_{\text {L }}^{1.8 \text { AA } 10,0,000}$			
$\frac{1}{11}$ Connatat bounce time	<1ms	${ }_{1} 1 \mathrm{~ms}$	${ }_{\text {c }} 1 \mathrm{~ms}$	${ }_{\text {c }}^{1 \mathrm{lms}}$	${ }_{1} 1 \mathrm{~ms}$	${ }^{2} 1 \mathrm{~ms}$	${ }_{<1 \mathrm{~ms}}$	${ }^{1} \mathrm{~ms}$	${ }^{1} 1 \mathrm{~ms}$	21 ms
	< 50 m 9	<50 m	< 50 m Q	< 50 m Q	<50 m	<50 ma	${ }^{\text {< } 50 \mathrm{~m} \text { ¢ }}$	<50 m	< 50 m S	<50 m
Inpregnation resisisane e with-or without resin	sutiole	suitabe	suithe	sutiabe	ornequest	orreeuest	sutible	sutable		
	${ }^{\text {com }}$	${ }_{450}{ }^{100 \mathrm{~N}} \mathrm{~N}^{2}$	${ }_{450}{ }^{100 \mathrm{~N}}$	${ }_{450}{ }^{100 \mathrm{~N} / \mathrm{N}^{2}}$	${ }_{450}{ }^{100 \mathrm{~N} /{ }^{2}}$		${ }_{405}^{100 \mathrm{~N} /{ }^{\text {a }}}$	$100 \mathrm{~m} / \mathrm{s}^{2}$	$100 \mathrm{~m} / \mathrm{s}^{2}$	100 m
16 High volage insulation (notc - verions)	2 kv	2 kv		$2{ }^{2 / v}$			2 kv	2 kV	2 kv	
	leadx suie 0.2.2 mm		single simie o. 0 mm	lead wire		Pin 0.4 Sumale \times. 0.8 mm				single wire
	(10.2mm	$\frac{9.4 \mathrm{~mm} / 9.9 \mathrm{~mm}}{47 \mathrm{~m} / 4.3 \mathrm{~mm}}$			${ }_{\substack{10.2 \mathrm{~mm} \\ 3.0 \mathrm{~mm}}}$	${ }_{\substack{10.2 \mathrm{~mm} \\ 3.0 \mathrm{~mm}}}$, 10.6 mm 110.2 mm	$\xrightarrow{9.4 \mathrm{~mm} / 9.9 \mathrm{~mm}} 5$		
$2{ }^{21}$ Length fofinulation cap								$\xrightarrow{5.0 \mathrm{~mm} / 4.4 . \mathrm{mm}}$		$\xrightarrow{5.6 \mathrm{~mm} .9 . \mathrm{mmm}}$
					${ }^{11.5 \mathrm{~mm}}$	${ }_{5}^{11.5 \mathrm{~mm}}$	11.5 mm			
				10.0 mm /2						
	IEG: VOE	IEG: ENEG; VE; UV: CSA; Cac	IEG: ENE: VOE: UT: CSA; Cac	IEG; ENE: VVE: UU: SSA; CaC	IIG: ENEG VOE: UL: UUL	IIG: ENEG V VE: Ulicul	IIG: ENEG: VOE: Ul:cul	IEG; ENE: VOE	IEG: VEE: VI: SA	IEG: VOE

[^0]

[^1]Priendinine Brings temperatues under control Thermal Protectors - Standard Products
Bringrninins Thermal Protectors - Standard Products
Brings temperatures under control Thermal Protectors - Standard Products

Serise 55006 veresion 01000.52008 / Subiect to change

Mersulls Thermal Protectors - Standard Products
Marrsilk

hermal Protectors - Standard Products

Brings temperatures under control Thermal Protectors - Standard Products

Ordering example									
	Automatic resetting, without base insulation for high performance with connection	Automatic resetting, with an insulation cap for high performance with connection	Self-hold thermal protector without base insulatio with connection leads	Self-hold thermal protector with an insulation cap with connection leads	Self-hold thermal protector without base insulation for high performance with connection leads	Self-hold thermal protector with an insulation cap for high performance with connection leads	for high performance and for direct mounting on terminals	l Motor-Protector acc. to IEC 6 without base insulation for high performance with connection lead	with an insulation cap for high performance with connection leads
Themal Protetors	${ }^{\text {ch6 }}$	$\underbrace{\text { cen }}_{\substack{\text { SH6 } \\ \text { SH6 }}}$	${ }^{\text {cr6 }}$	${ }_{\substack{\text { sf6 } \\ \text { SR6 }}}^{\text {cher }}$	$\mathrm{CRH}^{\text {H }}$	$\underbrace{\substack{\text { sRH }}}_{\text {SRH }}$	pa1	${ }^{\text {cal }}$	S41
	СН6		${ }^{\text {crib }}$		$\mathrm{ckH}^{\text {che }}$		PA1	${ }^{\text {cal }}$	SA1
	${ }^{70}{ }^{\circ} \mathrm{CC}-180^{\circ} \mathrm{C}$	${ }_{70}{ }^{\circ} \mathrm{Cc}-180^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{oc} \mathrm{Cc} 180^{\circ} \mathrm{C}$	${ }^{7} 0^{\circ} \mathrm{NC}-180^{\circ} \mathrm{C}$	${ }_{70}{ }^{\circ} \mathrm{Cc} 180^{\circ} \mathrm{C}$	${ }_{70}{ }^{\circ} \mathrm{Cc} 180^{\circ} \mathrm{C}$	${ }_{70}{ }^{\circ} \mathrm{C}-160^{\circ} \mathrm{Cl}{ }^{\text {a }}$	${ }_{70}{ }^{\circ} \mathrm{C}-160^{\circ} \mathrm{Cl}{ }^{\text {a }}$	
								$\underset{\substack{\text { ¢ 55k } \\ 350}}{ }$	
						depensosn u	100 Vupt 5000 V -	100 vpp to 500 V -	100 uppt 500 V -
56 Rated olage $U_{\text {mam }} \mathrm{AC}$	250 V Vobel 27 TV (UU)	250 V (VOE) 27 V V (U)	$115 \mathrm{~V} / 230 \mathrm{~V}$ (VEE) 250 V V(U)	$115 \mathrm{~V} / 23 \mathrm{~V}$ V VVEI 250 V (UU)	$115 \mathrm{~V} / 23 \mathrm{~V} \mathrm{~V}$ VEEE 250 V VUU)	$115 \mathrm{~V} / 23 \mathrm{~V}$ V VOEE 250 V (UU)	250 V	230 V	250 V
							37.0A /3.00	37.0A /3.000	37.00 /3.000
	${ }^{420.0 / 3} 300$	42.0 / 3000	25.0A 11.000	25.0A / 1,000	$420 \mathrm{~A} / 300$	42.0 / 300			
	9.0A 110,00	9.0A 110.000	6.3A11.000	6.3A/1.000	9.0A/300	90.0/1300			
							60.0 A (cos $\varphi=1.0)$	$60.0 \mathrm{Alos} \varphi=1.0)$	$60.0 \mathrm{~A}(\cos \varphi=1.0)$
		${ }_{<1 \mathrm{~lm}}^{50 \mathrm{~m} \text { S }}$	${ }_{<1} \times 1 \mathrm{~mm}$	${ }_{<1} \mathbf{1} 5 \mathrm{~mm}$	${ }_{<1} \times 1 \mathrm{~mm}$	${ }_{\substack{\text { < } 50 \mathrm{~ms} \\ \hline \text { m }}}$	${ }_{\text {- } 50 \mathrm{~mm}}$	${ }_{\text {- } 50 \mathrm{~mm}}$	${ }_{\text {- } 50 \mathrm{~mm}}$
	sutable	sutithe	suitabe	suitble	suitble	suitabe	suitble	suithle	suitble
$\frac{14}{15}$ Pressurue stabilitito fotousing**	${ }^{\text {com }}$	${ }^{\text {Nom }}$	${ }^{1000 \mathrm{~N}}$	${ }^{\text {com } / s^{\text {s }}}$	${ }^{\text {com }}$	$\xrightarrow{\substack{1000 \mathrm{~m} /{ }^{\text {a }} \\ 60 \mathrm{~N}}}$	${ }_{150}{ }^{\circ}$	${ }_{150} \mathrm{~N}$	${ }_{150}$
High ovtagei isulation (rotec - versions)				2 kv		2 kV			2 kV
							(e)		
Diameer (with / without insultion cap)	9.3 mm	9.8 mm	9.3 mm	9.8 mm		9.8 mm			
	${ }^{12 \mathrm{~mm}}$	${ }_{\substack{1.6 \mathrm{~mm} \\ 17.0 \mathrm{~mm}}}$	1.2 mm	${ }_{\substack{1.6 \mathrm{~mm} \\ 170 \mathrm{~mm}}}$	12 mm	${ }_{\substack{1.6 \mathrm{~mm} \\ 170 \mathrm{~mm}}}$	4.6 mm	4.6 mm	${ }^{5.1 \mathrm{~mm}}$
	.						$32.5 \mathrm{~mm} / 10.3 \mathrm{~mm}$	$27.0 \mathrm{~mm} / 10.3 \mathrm{~mm}$	$32.5 \mathrm{~mm} / 10.8 \mathrm{~mm}$
Lereel $/$ - -ength									
25 Wrench size /max turing mment									
26 Approvals avilible leccorring todesign) ${ }^{\text {* }}$	IEG: VOE: Ul: COL	IEG: VOE: Vl: COL	IEG: VEE: UL: SSA	IIG: VEE: VL: SSA	IEG: VEE: VL: CSA	IEG: VEE: UL: CSA	IEG: VOE	IEG: VOE	IEG: VOE
								Uoro	ing time depending on rated cur

[^2]

PTAT] PTC-Thermistor Sensors

PTC Thermistor Sensors

Insulation material
Operating voltage
Max. operating voltage
Max. recomended sensor voltage
High voltage insulation
Length of insulation cap
Diameter
Screw length
Wrench size

$\begin{aligned} & \\| \\ & 2 \\ & 2 \end{aligned}$			
SNM	SKM	STM	LTM
Mylar-Nomex	Kynar	Teflon	
$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}-180^{\circ} \mathrm{C}$
2.5 VDC - 30 VDC	$2.5 \mathrm{VDC}-30 \mathrm{VDC}$	$2.5 \mathrm{VDC}-30 \mathrm{VDC}$	$2.5 \mathrm{VDC}-30 \mathrm{VDC}$
30 VDC	30 VDC	30 VDC	30 VDC
2.5 VDC - 7.5 VDC			
2.5 kV	2.5 kV	2.5 kV	2.5 kV
12.0 mm	12.0 mm	12.0 mm	12.0 mm
$\leq 3.0 \mathrm{~mm}$	$\leq 3.0 \mathrm{~mm}$	$\leq 3.0 \mathrm{~mm}$	$\leq 3.0 \mathrm{~mm}$
			M $4 / 5 \mathrm{~mm}$
			$10 / 2 \mathrm{Nm}$

Colour-Coding italic written data does not acc. to DIN 44081 / 44082

60	70	80	$\mathbf{9 0}$	$\mathbf{1 0 0}$	105	110	115	120	125	130
white	white	white	green	red	blue	brown	blue	grey	red	blue
grey	brown	white	green	red	grey	brown	green	grey	green	blue

135	140	145	150	155	160	165	170	180	190
red	white	white	black	blue	blue	blue	white	white	black
brown	blue	black	black	black	red	brown	green	red	brown

[^0]: *p please specify which appovoal is needed

[^1]: 101 vesion 01090.5 .208 / Subiect tochange

[^2]: sernor

