

Closed Loop Precise Hall Current Sensor CYHCS-SH

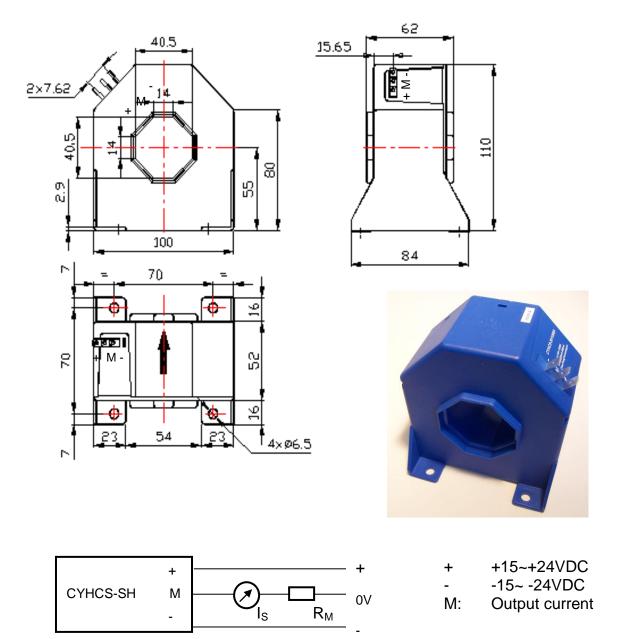
This Hall Effect current sensor is based on closed loop compensating principle and can be used for measurement of DC and AC current, pulse currents etc. The output of the transducer reflects the real wave of the current carrying conductor.

Product Characteristics	Applications
 Excellent accuracy Very good linearity Accuracy independent on the position of premiary cable Lager measuring range 	 Photovoltaic equipment General Purpose Inverters AC/DC Variable Speed Drivers Battery Supplied Applications Uninterruptible Power Supplies Switched Mode Power Supplies

ELECTRICAL DATA

Part number	CYHCS-SH1000A
Nominal input current	10A ~1000A
Measuring range	0-10A ~ 0-3000A
Turns ratio	1:5000
Measuring resistance	with Vc= \pm 15V, @ \pm 1000Amax, 0-30 Ω , @ \pm 1500Amax, 0-5 Ω ,
	with Vc= \pm 24V, @ \pm 1000Amax, 0-68 Ω , @ \pm 3000Amax, 0-3 Ω ,
Supply voltage	±15VDC ~ ±24VDC
Nominal output current	$2mA \pm 0.2\% \sim 200mA \pm 0.2\%$
Accuracy at +25°C	0.2%FS
Current consumption	≤28mA + Output current at Vc=±15V
Galvanic isolation	50Hz, 1min, 6KV
Secondary internal resistance	Ta=25°C, 32 Ω

ACCURACY DYNAMIC PERFORMANCE


Zero offset current Ta=25°C	< ±0.2mA
Magnetic Offset current IP→0	< ±0.2mA
Thermal drift of offset current	IP=0, Ta=-40°C ~ +85°C, ±0.5mA
Response time	<1µs
Linearity	≤0.1%FS
Accuracy	± 0.2% for rated current 10A ~1000A
Bandwidth(-3dB)	DC150kHz
di/dt	>100A/µs

GENERAL DATA

Operating temperature	-40°C ~ +85°C
Storage temperature	-40°C ~ +125°C

http://www.cy-sensors.com

Dimensions (mm)

Operating instructions

- 1. Connect the terminals of power source, outputs respectively and correctly, never make wrong connection for DC current.
- 2. Temperature of the primary conductor should not exceed 100 °C.
- 3. Dynamic performances (di/dt and the response time) are the best with a single bar completely filling the primary hole.
- 4. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.

Tel.: +49 (0)8121 - 2574100

Fax: +49 (0)8121- 2574101

Email: info@cy-sensors.com http://www.cy-sensors.com