

16A TRIACS

BTA16-600/800/1200 (Ins) BTB16-600/800/1200 (Non-Ins)

TO-220 Leaded Plastic Package RoHS compliant

TO-220

GENERAL DISCRIPTION:

BTA16 series triacs, with high ability to withstand the shock loading of large current, provide high dv/dt rate with strong resistance to electromagnetic interface. With high commutation performances, 3 quadrant products specially recommended for use on inductive load.

APPLICATIONS: High performance full-wave ac control applications

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C Unless otherwise specified)

	PARAMETER	SYMBOL	VALUE	UNIT
Storage junction t	emperature range	T _{stg}	-40 to +150	°C
Operating junction	n temperature range	Tj	-40 to +125	°C
Repetitive peak o	ff-state voltage (T _j =25°C)	V_{DRM}	600/800/1200	V
Repetitive peak re	everse voltage (T _j =25°C)	V_{RRM}	600/800/1200	V
Non repetitive sur	ge peak Off-state voltage	V_{DSM}	V _{DRM} +100	V
Non repetitive pea	ak reverse voltage	V_{RSM}	V _{RRM} +100	V
RMS on-state current	()()		16	Α
Non repetitive surge peak on-state current (full cycle, F=50Hz)		I _{TSM}	160	А
I ² t value for fusing	g (t _p =10ms)	l ² t	128	A^2s
Critical rate of rise of on-state current (I _G =2×I _{GT})		dl/dt	50	A/µs
Peak gate curren	ate current		4	Α
Average gate pov	ver dissipation	$P_{G(AV)}$	1	W
Peak gate power		P_{GM}	5	W

THERMAL RESISTANCES

PARAMETER		SYMBOL	VALUE (MAX)	UNIT
Maximum Thermal	TO-220 (Ins)	В	2.1	°C/\\/
Resistance	TO-220 (Non-Ins)	rth(j-c)	1.2	°C/W

Continental Device India Pvt. Limited

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

ELECTRICAL CHARACTERISTICS at (Ta = 25 °C Unless otherwise specified)

3 Quadrants (V $_{\rm DRM}$ /V $_{\rm RRM}$: 600/800V)

PARAMETER	SYMBOL	CHADBANT	QUADRANT TEST CONDITION		VALUE			UNIT
PARAMETER	STWIBUL	QUADRANT			CW	SW	TW	UNII
Gate Trigger Current	I_{GT}	I - II - III	\/ -12\/ D -22O	<50	<35	<10	<5	mA
Gate Trigger Voltage	V_{GT}	$V_D = 12V R_L = 33\Omega$ <1.3					V	
Off-State Gate Voltage	V_{GD}	1 - 11 - 111	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ K Ω		>(0.2		V
Latching Current		1 - 111	1 -1 21	<70	<50	<30	<15	mΛ
Latching Current	IL	II	$I_{G} = 1.2I_{GT}$	<80	<60	<40	<20	mA
Holding Current	I _H		I _T =100mA	<60	<40	<25	<15	mA
Critical Rate of Rise of Off-State Voltage	dV/dt		V _D =2/3V _{DRM} Gate Open T _j =125°C	>1000	>500	>200	>100	V/µs

4 Quadrant (V DRM/V RRM: 600/800V)

PARAMETER	SYMBOL QUADRANT		TEST CONDITION	VALUE		UNIT
PARAMETER	STWIDUL	QUADRANT	1E31 CONDITION	В	С	UNII
Gate Trigger Current		I - II - III		<50	<25	mA
Gate Higger Current	I _{GT}	IV	$V_{D} = 12V R_{I} = 33\Omega$	<70	<50	IIIA
Gate Trigger Voltage	V_{GT}	ALL	5 - 2	<	1.5	V
Off-State Gate Voltage	V_{GD}	ALL	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ K Ω	>(0.2	٧
Latching Current	ı	I - III - IV	I =1 2I	<70	<50	mΛ
Latching Current	ال	II	I _G =1.2I _{GT}	<100	<80	mA
Holding Current	I _H		I _T =100mA	<60	<40	mA
Critical Rate of Rise of Off-State Voltage	dV/dt		$V_D = 2/3V_{DRM}$ Gate Open $T_j = 125$ °C	>500	>200	V/µs

3 Quadrants (V DRM/V RRM: 1200V)

PARAMETER	SYMBOL	QUADRANT	TEST CONDITION	VALUE	UNIT
Gate Trigger Current	I _{GT}	1 - 11 - 111	V _D =12V R _I =33Ω	<50	mA
Gate Trigger Voltage	V_{GT}	I - II - III	V _D - 12 V K _L -3312	<1.5	V
Off-State Gate Voltage	$V_{\sf GD}$	1 - 11 - 111	$V_D = V_{DRM} T_j = 125$ °C $R_L = 3.3$ K Ω	>0.2	V
Latching Current	1	I - III	I -1 2I	<70	mA
Latering Current	ΙL	II	I _G =1.2I _{GT}	<90	ША
Holding Current	I _H		I _T =100mA	<60	mA
Critical Rate of Rise of Off-State Voltage	dV/dt		$V_D = 2/3V_{DRM}$ Gate Open $T_j = 125$ °C	>1500	V/µs

Continental Device India Pvt. Limited

An IATF 16949, ISO9001 and ISO 14001/ISO 45001 Certified Company

ELECTRICAL CHARACTERISTICS at (Ta = 25 °C Unless otherwise specified)

STATIC CHARACTERISTICS

PARAMETER		SYMBOL TEST CONDITION			LINUT		
PARAMET	EK	STWIBUL	TEST CONDITION	600V	V008	1200V	UNIT
On-State Voltage	T _j =25°C	V_{TM}	$I_{TM} = 22.5 \text{A t}_p = 380 \mu \text{s}$		1.5		V
Off-State	T _j =25°C	I _{DRM}	\/ -\/ \/ -\/	5	5	10	μA
Leakage Current	T _j =125°C	I _{RRM}	$V_D = V_{DRM}$, $V_R = V_{RRM}$	2	2	1	mA

ORDERING INFORMATION

BTA12-XY BTB12-XY

Where

X = 600: VDRM/VRRM ≥ 600

= 800: VDRM/VRRM ≥ 800

= 1200: VDRM/VRRM ≥ 1200

Y = BW: IGT1-3 ≤ 50mA

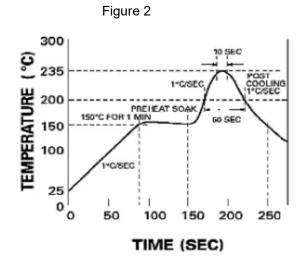
= CW: IGT1-3 ≤ 35mA

= SW: IGT1-3 ≤ 10mA

= TW: IGT1-3 ≤ 5mA

= B: IGT1-3≤50mA IGT4≤70mA

= C: IGT1-3≤25mA IGT4≤50mA



Recommended Reflow Solder Profiles

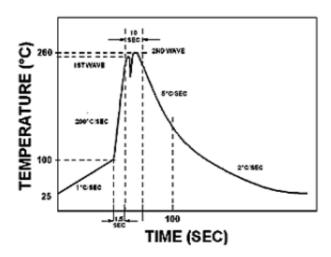
The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

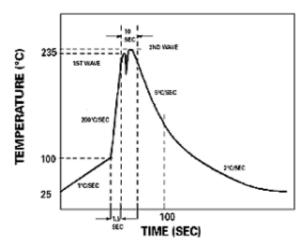
Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder is used.

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.

Reflow profiles in tabular form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.





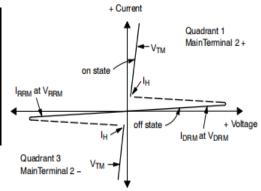
Recommended Wave Solder Profiles

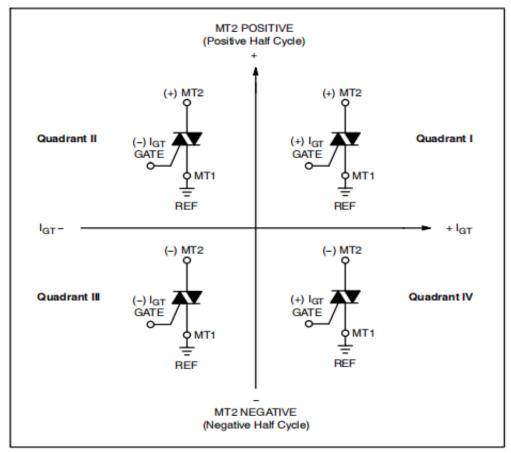
The Recommended solder Profile For Devices with Pb-free terminal plating where a Pb-free solder is used

The Recommended solder Profile For Devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with leaded solder

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~200°C/second	~200°C/second
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	10 seconds
Ramp-Down Rate	5°C/second max.	5°C/second max



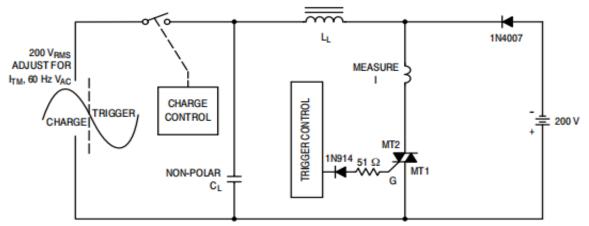


Voltage Current Characteristic of Triacs (Bidirectional Device)

SYMBOL	PARAMETER		
V_{DRM}	Peak Repetitive Forward Off State Voltage		
I _{DRM}	Peak Forward Blocking Current		
V_{RRM}	Peak Repetitive Reverse Off State Voltage		
I _{RRM}	Peak Reverse Blocking Current		
V_{TM}	Maximum On State Voltage		
I _H	Holding Current		

Quadrant Definitions for a Triac

All polarities are referenced to MT1.


With in-phase signals (using standard AC lines) quadrants I and III are used.

TEST CIRCUIT AND DIAGRAMS

Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)c

Note: Component values are for verification of rated (di/dt)_c. See AN1048 for additional information.

TYPICAL CHARACTERISTICS CURVES

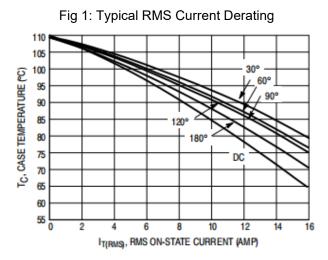


Fig 2: On-State Characteristics

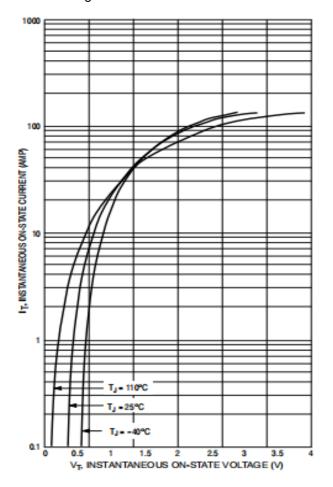


Fig 3: On-State Power Dissipation

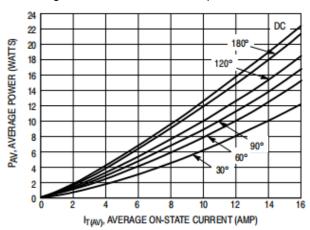


Fig 4: Thermal Response

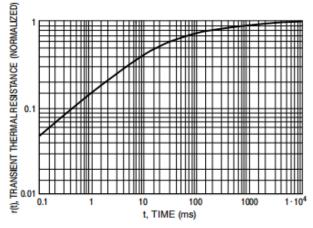
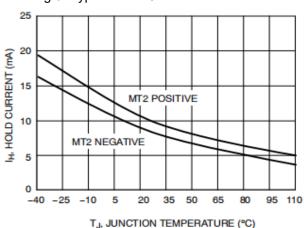



Fig 5: Typical Hold Current Variation

TYPICAL CHARACTERISTICS CURVES

Fig 6: Typical Gate Trigger Current Variation

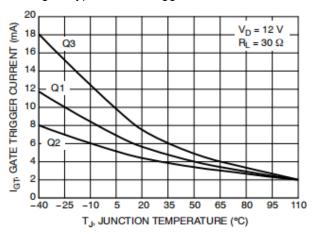


Fig 8: Typical Latching Current Variation

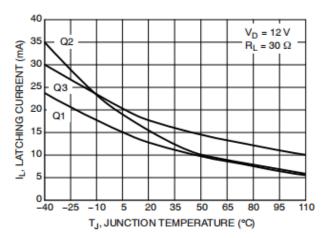
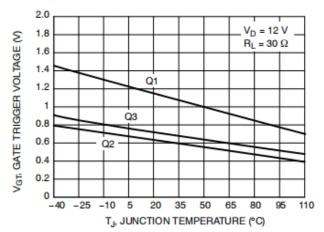
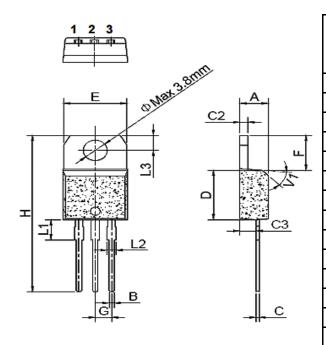
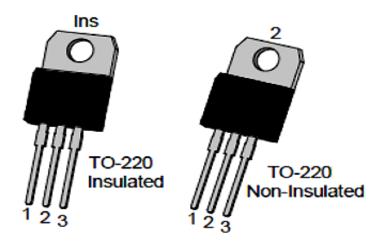



Fig 7: Typical Gate Trigger Voltage Variation



PACKAGE DETAILS


TO-220 Insulated/ Non-insulated Leaded Plastic Package

	Dimensions					
Ref.	Millir	neters			Inches	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	0.61		0.88	0.024		0.035
С	0.46		0.70	0.018		0.028
C2	1.21		1.32	0.048		0.052
C3	2.40		2.72	0.094		0.107
D	8.60		9.70	0.339		0.382
Е	9.80		10.4	0.386		0.409
F	6.55		6.95	0.258		0.274
G		2.54			0.1	
Н	28.0		29.8	1.102		1.173
L1		3.75			0.15	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
V1		45°			45°	

Pin Configuration

- 1. T1
- 2. T2
- 3. GATE

Recommended Product Storage Environment for Discrete Semiconductor Devices

This storage environment assumes that the Diodes and transistors are packed properly inside the original packing supplied by CDIL.

- · Temperature 5 °C to 30 °C
- · Humidity between 40 to 70 %RH
- · Air should be clean.
- · Avoid harmful gas or dust.
- · Avoid outdoor exposure or storage in areas subject to rain or water spraying .
- · Avoid storage in areas subject to corrosive gas or dust. Product shall not be stored in areas exposed to direct sunlight.
- · Avoid rapid change of temperature.
- · Avoid condensation.
- · Mechanical stress such as vibration and impact shall be avoided.
- · The product shall not be placed directly on the floor.
- · The product shall be stored on a plane area. They should not be turned upside down.

They should not be placed against the wall.

Shelf Life of CDIL Products

The shelf life of products is the period from product manufacture to shipment to customers. The product can be unconditionally shipped within this period. The period is defined as 2 years.

If products are stored longer than the shelf life of 2 years the products shall be subjected to quality check as per CDIL quality procedure.

The products are further warranted for another one year after the date of shipment subject to the above conditions in CDIL original packing.

Floor Life of CDIL Products and MSL Level

When the products are opened from the original packing, the floor life will start.

For this, the following JEDEC table may be referred:

	JEDEC MSL Level					
Level	Time	Condition				
1	Unlimited	≤30 °C / 85% RH				
2	1 Year	≤30 °C / 60% RH				
2a	4 Weeks	≤30 °C / 60% RH				
3	168 Hours	≤30 °C / 60% RH				
4	72 Hours	≤30 °C / 60% RH				
5	48 Hours	≤30 °C / 60% RH				
5a	24 Hours	≤30 °C / 60% RH				
6	Time on Label(TOL)	≤30 °C / 60% RH				

Customer Notes

Component Disposal Instructions

- 1. CDIL Semiconductor Devices are RoHS compliant, customers are requested to please dispose as per prevailing Environmental Legislation of their Country.
- 2. In Europe, please dispose as per EU Directive 2002/96/EC on Waste Electrical and Electronic Equipment (WEEE).

Disclaimer

The product information and the selection guides facilitate selection of the CDIL's Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished in the Data Sheet and on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.

CDIL is a registered trademark of

Continental Device India Pvt. Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone +91-11-2579 6150, 4141 1112 Fax +91-11-2579 5290, 4141 1119

email@cdil.com www.cdil.com

CIN No. U32109DL1964PTC004291