

Features

- Fully encapsulated

Lead free version available (see How to Order)

- Low profile

■ Lead free versions are RoHS compliant*

- High dielectric strength
- Ten models available

■ Ex stock
■ Competitively priced

Applications

- Line matching
- Fax modem

LM-NP/-LP 1000 Series - Line Matching Transformers

Product Dimensions

${ }^{*}$:pitch $=1 / 10 "=2.54(.100)($ for number of pins see pin assignment)

Note:

The LM-NP/-LP-1000 Series Line Matching Transformers meet the return loss specifications of BS 6305.

It is important, however, to use the circuit recommended by BS 6305 for return loss measurements.

The LM-NP-1000 Series are EN 41003 approved.
DIMENSIONS ARE: $\frac{\text { MM }}{}$

How to Order

LM-xP-100x-xx
\qquad
Model
Termination
Blank $=$ Tin-lead
$L=$ Tin only (lead free)

Pin Assignment and Winding Configurations (Bottom View)

LM-NP-1001-B1
LM-LP-1001

LM-NP-1002
LM-LP-1002

one-winding center-tapped*

LM-NP-1003
LM-LP-1003

one winding split ${ }^{\star}$

LM-NP-1004
LM-LP-1004
both windings center-tapped

LM-NP-1005
LM-LP-1005

both windings split

[^0]
LM-NP/-LP 1000 Series - Line Matching Transformers

Part Numbers And Specifications

Parameters		Unit	$\begin{aligned} & \text { LM-NP } \\ & \text { 1001-B1 } \end{aligned}$	$\begin{gathered} \text { LM-NP } \\ 1002 \end{gathered}$	$\begin{gathered} \text { LM-NP } \\ 1003 \end{gathered}$	$\begin{gathered} \text { LM-NP } \\ 1004 \end{gathered}$	$\begin{aligned} & \text { LM-NP } \\ & 1005 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { LM-LP } \\ 1001 \end{array}$	$\begin{array}{\|c} \text { LM-LP } \\ 1002 \end{array}$	$\begin{gathered} \text { LM-LP } \\ 1003 \end{gathered}$	$\begin{gathered} \text { LM-LP } \\ 1004 \end{gathered}$	$\begin{gathered} \text { LM-LP } \\ 1005 \end{gathered}$
Ref. Temperature Data		${ }^{\circ} \mathrm{C}$	25	25	25	25	25	25	25	25	25	25
Impedance (min./at 1.0 kHz)	Primary	Ω	600	600	600	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{array}{\|c\|} \hline 600 \\ (150+150) \end{array}$	600	600	600	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{gathered} 600 \\ (150+150) \end{gathered}$
	Secondary	Ω	600	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{gathered} 600 \\ (150+150) \end{gathered}$	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{gathered} 600 \\ (150+150) \end{gathered}$	600	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{gathered} 600 \\ (150+150) \end{gathered}$	$\begin{gathered} 600 \\ (150,150) \end{gathered}$	$\begin{gathered} 600 \\ (150+150) \end{gathered}$
Inductance (min./at 0.2 kHz)	Primary	H	2.8	2.8	2.8	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$	2.8	2.8	2.8	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$
	Secondary	H	2.8	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$	2.8	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7,0.7) \end{gathered}$	$\begin{gathered} 2.8 \\ (0.7+0.7) \end{gathered}$
DC-Resistance (typical/ ± 10 \%)	Primary	Ω	66	66	66	$\begin{gathered} 66 \\ (33,33) \end{gathered}$	$\begin{gathered} 66 \\ (33+33) \end{gathered}$	90	90	90	$\begin{gathered} 90 \\ (45,45) \end{gathered}$	$\begin{gathered} 90 \\ 45+45) \end{gathered}$
	Secondary	Ω	66	$\begin{gathered} 66 \\ (33,33) \end{gathered}$	$\begin{gathered} 66 \\ (33+33) \end{gathered}$	$\begin{gathered} 66 \\ (33,33) \end{gathered}$	$\begin{gathered} 66 \\ (33+33) \end{gathered}$	90	$\begin{gathered} 90 \\ (45,45) \end{gathered}$	$\begin{gathered} 90 \\ (45+45) \end{gathered}$	$\begin{gathered} 90 \\ (45,45) \end{gathered}$	$\begin{gathered} 90 \\ 45+45) \end{gathered}$
Turns Ratio ($\leq \pm 2$ \%)		-	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1	1:1
Winding Configurations		-	-	one winding center tapped	one winding split	both windings center tapped	both windings split	-	one winding center tapped	one winding split	both windings center tapped	both windings split
Insertion Loss (at 2.0 kHz)		dB	≤ 1.5					≤ 2.0				
Return Loss	Transformer (0.2-4.0 kHz) In Networks	dB	$\begin{aligned} & \geq 10.0 \\ & \geq 21.0 \end{aligned}$					$\begin{aligned} & \geq 8.0 \\ & \geq 20.0 \end{aligned}$				
Shunt Loss (typical)		$\mathrm{k} \Omega$	9.0					9.0				
Frequency Response (typ./0.2-3.5 kHz)		dB	-0.3					-0.5				
Wide Band Response(0.2-10.0 kHz)		dB	-2.5					-4.5				
Power Level		dBm	-45.0 to +3.0					-43.0 to +3.0				
Longitudinal Balance(0.3-4.0 kHz)		dB	-80.0					- 70.0				
Distortion (0 dB/at 1.0 kHz)		\%	≤ 0.1					≤ 0.25				
Leakage Induction (typical)		mH	14.0					14.0				
Dielectric Strength (P/S)		kVDC	6.5					6.5				
Temperature Range	Operation	${ }^{\circ} \mathrm{C}$	-10 to +60					-10 to +60				
	Storage	${ }^{\circ} \mathrm{C}$	-20 to +70					-20 to +70				
Specifications Met		BS 6204: Construction and flammability (UL 94 VO) BS 6301: Isolation BS 6305: Return loss (1982/paragraph 4.3.2.2/b)						CCITT: Rec. T/CD 1-1 (Sept. 1982)				

[^0]: * Due to the unique design and the most advanced manufacturing techniques the 2 coils are fully identical, meaning there is no real primary nor secondary winding. Depending on the application, the transformers can be used either way.

