

LC²MOS $5 \Omega R_{0N}$ SPST Switches

ADG451/ADG452/ADG453

FEATURES

Low on resistance (4 Ω) On resistance flatness (0.2 Ω) 44 V supply maximum ratings ±15 V analog signal range Fully specified at ±5 V, +12 V, ±15 V Ultralow power dissipation (18 µW) ESD 2 kV Continuous current (100 mA) Fast switching times ton 70 ns toff 60 ns TTL/CMOS-compatible

Pin-compatible upgrade for ADG411/ADG412/ADG413 and ADG431/ADG432/ADG433

APPLICATIONS

Relay replacement Audio and video switching **Automatic test equipment** Precision data acquisition **Battery-powered systems** Sample-and-hold systems **Communication systems** PBX, PABX systems **Avionics**

GENERAL DESCRIPTION

The ADG451/ADG452/ADG453 are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC2MOS process that provides low power dissipation yet gives high switching speed and low on resistance.

The on resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation, making the parts ideally suited for portable and battery-powered instruments.

The ADG451/ADG452/ADG453 contain four independent single-pole/single-throw (SPST) switches. The ADG451 and

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAMS

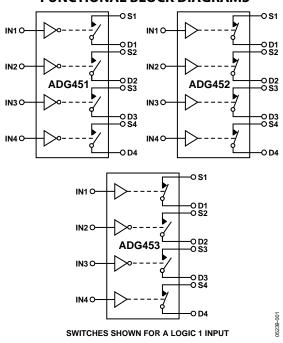


Figure 1.

ADG452 differ only in that the digital control logic is inverted. The ADG451 switches are turned on with a logic low on the appropriate control input, while a logic high is required for the ADG452. The ADG453 has two switches with digital control logic similar to that of the ADG451, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when on, and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked.

The ADG453 exhibits break-before-make switching action for use in multiplexer applications. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.

TABLE OF CONTENTS

Product Highlights	3
Specifications	4
Dual Supply	4
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configuration and Function Descriptions	9

Terminology1	0
Typical Performance Characteristics	1
Applications	13
Test Circuits	4
Outline Dimensions	6
Ordering Guide	17

REVISION HISTORY

12/04—Rev. A to Rev. B

Updated Format	Universal
Changes to Specifications Section	3
Changes to Absolute Maximum Ratings Section	8
Changes to Pin Configuration and Function	
Descriptions Section	9
Updated Outline Dimensions	16
Changes to Ordering Guide	17

2/98—Rev. 0 to Rev. A

10/97—Revision 0: Initial Version

PRODUCT HIGHLIGHTS

- 1. Low R_{ON} (5 Ω maximum)
- 2. Ultralow Power Dissipation
- 3. Extended Signal Range The ADG451/ADG452/ADG453 are fabricated on an enhanced LC 2 MOS process, giving an increased signal range that fully extends to the supply rails.
- 4. Break-Before-Make Switching
 This prevents channel shorting when the switches are configured as a multiplexer (ADG453 only.)

5. Single-Supply Operation

For applications in which the analog signal is unipolar, the ADG451/ADG452/ADG453 can be operated from a single rail power supply. The parts are fully specified with a single 12 V power supply and remain functional with single supplies as low as 5.0 V.

6. Dual-Supply Operation

For applications where the analog signal is bipolar, the ADG451/ADG452/ADG453 can be operated from a dual power supply ranging from $\pm 4.5~V$ to $\pm 20~V$.

SPECIFICATIONS

DUAL SUPPLY

 $V_{DD} = +15 \ V, V_{SS} = -15 \ V, V_L = +5 \ V, GND = 0 \ V. \ All \ specifications \ T_{MIN} \ to \ T_{MAX}, unless \ otherwise \ noted.$

Table 1.

	B Version ¹				
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		V_{SS} to V_{DD}	V		
On Resistance (R _{ON})	4		Ωtyp	$V_D = -10 \text{ V to } +10 \text{ V}, I_S = -10 \text{ mA}$	
	5	7	Ω max		
On Resistance Match Between Channels (ΔR_{ON})	0.1		Ωtyp	$V_D = \pm 10 \text{ V, I}_S = -10 \text{ mA}$	
	0.5	0.5	Ω max		
On Resistance Flatness (R _{FLAT(ON)})	0.2		Ω typ	$V_D = -5 \text{ V}, 0 \text{ V}, +5 \text{ V}, I_S = -10 \text{ mA}$	
	0.5	0.5	Ω max		
LEAKAGE CURRENTS ²					
Source Off Leakage, Is (Off)	±0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}$; Figure 15	
	±0.5	±2.5	nA max		
Drain Off Leakage, I _D (Off)	±0.02		nA typ	$V_D = \pm 10 \text{ V}, V_S = \pm 10 \text{ V}; \text{ Figure 15}$	
	±0.5	±2.5	nA max		
Channel On Leakage, ID, IS (On)	±0.04		nA typ	$V_D = V_S = \pm 10 \text{ V}$; Figure 16	
	±1	±5	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.4	V min		
Input Low Voltage, V _{INL}		0.8	V max		
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH} ; all others = 2.4 V or 0.8 V, respectively	
		±0.5	μA max		
DYNAMIC CHARACTERISTICS ³					
ton	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = \pm 10 V$; Figure 17	
	180	220	ns max		
t off	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = \pm 10 V$; Figure 17	
	140	180	ns max		
Break-Before-Make Time Delay, t _D (ADG453 Only)	15		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = +10 V$; Figure 18	
	5	5	ns min		
Charge Injection	20		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; Figure 19$	
	30		pC max		
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20	
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21	
C _s (Off)	37		pF typ	f=1 MHz	
C _D (Off)	37		pF typ	f = 1 MHz	
C_D , C_S (On)	140		pF typ	f=1 MHz	
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}; \text{ digital inputs} = 0 \text{ V or 5 V}$	
I _{DD}	0.0001		μA typ		
	0.5	5	μA max		

	В	Version ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
I _{SS}	0.0001		μA typ	
	0.5	5	μA max	
IL	0.0001		μA typ	
	0.5	5	μA max	
I _{GND}	0.0001		μA typ	
	0.5	5	μA max	

 $^{^1}$ Temperature range for B Version is -40°C to $+85^{\circ}\text{C}.$ 2 $T_{\text{MAX}} = 70^{\circ}\text{C}.$

 $V_{\text{DD}} = 12 \text{ V}, V_{\text{SS}} = 0 \text{ V}, V_{\text{L}} = 5 \text{ V}, GND = 0 \text{ V}. \text{ All specifications } T_{\text{MIN}} \text{ to } T_{\text{MAX}}, \text{unless otherwise noted.}$

Table 2.

	В	Version ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0 V to V_{DD}$	V	
On Resistance (RoN)	6		Ω typ	$V_D = 0 \text{ V to } +10 \text{ V, I}_S = -10 \text{ mA}$
	8	10	Ω max	
On Resistance Match Between Channels (ΔR_{ON})	0.1		Ωtyp	$V_D = +10 \text{ V}, I_S = -10 \text{ mA}$
	0.5	0.5	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	1.0	1.0	Ωtyp	$V_D = 0 \text{ V}, +5 \text{ V}, I_S = -10 \text{ mA}$
LEAKAGE CURRENTS ^{2, 3}				
Source Off Leakage, I₅ (Off)	±0.02		nA typ	$V_D = 0 \text{ V}$, 10 V, $V_S = 0 \text{ V}$, 10 V; Figure 15
	±0.5	±2.5	nA max	
Drain Off Leakage, I _D (Off)	±0.02		nA typ	$V_D = 0 \text{ V}, 10 \text{ V}, V_S = 0 \text{ V}, 10 \text{ V}; Figure 15$
	±0.5	±2.5	nA max	
Channel On Leakage, ID, Is (On)	±0.04		nA typ	$V_D = V_S = 0 \text{ V}, 10 \text{ V}; \text{ Figure 16}$
	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ⁴				
ton	100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; Figure 17
	220	260	ns max	
toff	80		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 8 V$; Figure 17
	160	200	ns max	
Break-Before-Make Time Delay, t _D (ADG453 Only)	15		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 8 V$; Figure 18
	10	10	ns min	
Charge Injection	10		pC typ	$V_S = 6 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; Figure 19$
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
C _s (Off)	60		pF typ	f = 1 MHz
C _D (Off)	60		pF typ	f = 1 MHz
C_D , C_S (On)	100		pF typ	f = 1 MHz

³ Guaranteed by design, not subject to production test.

	В	Version ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
POWER REQUIREMENTS				V _{DD} = 13.2 V; digital inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
	0.5	5	μA max	
IL	0.0001		μA typ	
	0.5	5	μA max	$V_L = 5.5 \text{ V}$
I _{GND} ⁴	0.0001		μA typ	
	0.5	5	μA max	$V_L = 5.5 \text{ V}$

 $^{^1}$ Temperature range for B Version is –40°C to +85°C. 2 T_{MAX} = 70°C.

 $V_{DD} = +5 \ V, V_{SS} = -5 \ V, V_L = +5 \ V, GND = 0 \ V. \ All \ specifications \ T_{MIN} \ to \ T_{MAX}, unless \ otherwise \ noted.$

Table 3.

	В	Version ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	7		Ω typ	$V_D = -3.5 \text{ V to } +3.5 \text{ V, } I_S = -10 \text{ mA}$
	12	15	Ω max	
On Resistance Match Between Channels (ΔR_{ON})	0.3		Ωtyp	$V_D = 3.5 \text{ V}, I_S = -10 \text{ mA}$
	0.5	0.5	Ω max	
LEAKAGE CURRENTS ^{2, 3}				
Source Off Leakage, Is (Off)	±0.02		nA typ	$V_D = \pm 4.5$, $V_S = \pm 4.5$; Figure 15
	±0.5	±2.5	nA max	
Drain Off Leakage, I _D (Off)	±0.02		nA typ	$V_D = 0 \text{ V}, 5 \text{ V}, V_S = 0 \text{ V}, 5 \text{ V}; Figure 15$
	±0.5	±2.5	nA max	
Channel On Leakage, ID, IS (On)	±0.04		nA typ	$V_D = V_S = 0 \text{ V}, 5 \text{ V}; \text{ Figure 16}$
	±1	±5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.5	μA max	
DYNAMIC CHARACTERISTICS ⁴				
t _{ON}	160		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; Figure 17
	220	300	ns max	
toff	60		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3 V$; Figure 17
	140	180	ns max	
Break-Before-Make Time Delay, t_D (ADG453 Only)	50		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3 V$; Figure 18
	5	5	ns min	
Charge Injection	10		pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1.0 \text{ nF}; Figure 19$
Off Isolation	65		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20
Channel-to-Channel Crosstalk	-76		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
Cs (Off)	48		pF typ	f = 1 MHz
C _D (Off)	48		pF typ	f = 1 MHz
C_D , C_S (On)	148		pF typ	f = 1 MHz

³ Tested with dual supplies. ⁴ Guaranteed by design, not subject to production test.

	В	B Version ¹		
Parameter	25°C	T _{MIN} to T _{MAX}	Unit	Test Conditions/Comments
POWER REQUIREMENTS				$V_{DD} = 5.5 \text{ V}$; digital inputs = 0 V or 5 V
I_{DD}	0.0001		μA typ	
	0.5	5	μA max	
I _{SS}	0.0001		μA typ	
	0.5	5	μA max	
IL	0.0001		μA typ	
	0.5	5	μA max	$V_L = 5.5 \text{ V}$
Ignd ⁴	0.0001		μA typ	
	0.5	5	μA max	$V_L = 5.5 \text{ V}$

 $^{^1}$ Temperature range for B Version is -40°C to $+85^\circ\text{C}$. 2 $T_{MMX}=70^\circ\text{C}$. 3 Tested with dual supplies. 4 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 4

Table 4.	
Parameters	Ratings
V _{DD} to V _{SS}	44 V
V _{DD} to GND	-0.3 V to +25 V
V _{SS} to GND	+0.3 V to -25 V
V_L to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$
Analog, Digital Inputs ¹	V _{SS} –2 V to V _{DD} +2 V or 30 mA, whichever occurs first
Continuous Current, S or D	100 mA
Peak Current, S or D (pulsed at 1 ms, 10% duty cycle max)	300 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature	150℃
Plastic DIP Package, Power Dissipation	470 mW
θ_{JA} Thermal Impedance	117°C/W
Lead Temperature, Soldering (10 s)	260°C
SOIC Package, Power Dissipation	600 mW
θ_{JA} Thermal Impedance	77°C/W
TSSOP Package, Power Dissipation	450 mW
θ _{JA} Thermal Impedance	115°C/W
θ _{JC} Thermal Impedance	35°C/W
Lead Temperature, Soldering	
Vapor Phase (60 s)	215°C
Infrared (15 s)	220°C
ESD	2 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

Table 5. Truth Table (ADG451/ADG452)

ADG451 In	ADG452 In	Switch Condition
0	1	On
1	0	Off

Table 6. Truth Table (ADG453)

Logic	Switch 1, 4	Switch 2, 3
0	Off	On
1	On	Off

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

 $^{^{\}rm 1}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

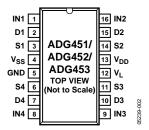


Figure 2. Pin Configuration (DIP, SOIC, TSSOP)

Table 7. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Logic Control Input.
2	D1	Drain Terminal. Can be an input or an output.
3	S1	Source Terminal. Can be an input or an output.
4	V _{SS}	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it can be connected to GND.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal. Can be an input or an output.
7	D4	Drain Terminal. Can be an input or an output.
8	IN4	Logic Control Input.
9	IN3	Logic Control Input.
10	D3	Drain Terminal. Can be an input or an output.
11	S3	Source Terminal. Can be an input or an output.
12	V_L	Logic Power Supply (5 V).
13	V_{DD}	Most Positive Power Supply Potential.
14	S2	Source Terminal. Can be an input or an output.
15	D2	Drain Terminal. Can be an input or an output.
16	IN2	Logic Control Input.

TERMINOLOGY

Ron

Ohmic resistance between D and S.

 $\Delta R_{\rm ON}$

On resistance match between any two channels, that is, $R_{\rm ON}$ maximum minus $R_{\rm ON}$ minimum.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off)

Source leakage current with the switch off.

I_D(Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 $V_D(V_S)$

Analog voltage on terminals D and S.

Cs (Off)

Off switch source capacitance.

 C_D (Off)

Off switch drain capacitance.

CD, Cs (On)

On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 17.

tofi

Delay between applying the digital control input and the output switching off.

 $t_{\rm D}$

Off time or on time measured between the 90% points of both switches, when switching from one address state to another. See Figure 18.

Crosstalk

A measure of unwanted signal coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

TYPICAL PERFORMANCE CHARACTERISTICS

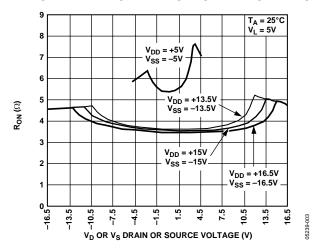


Figure 3. On Resistance as a Function of V_D (V_S) for Various Dual Supplies

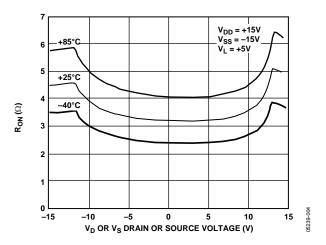


Figure 4. On Resistance as a Function of V_D (V_S) for Different Temperatures with Dual Supplies

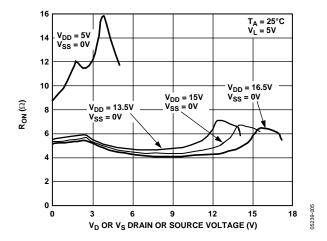


Figure 5. On Resistance as a Function of V_D (V_S) for Various Single Supplies

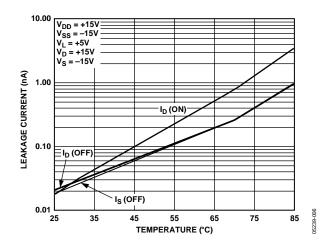


Figure 6. Leakage Currents as a Function of Temperature

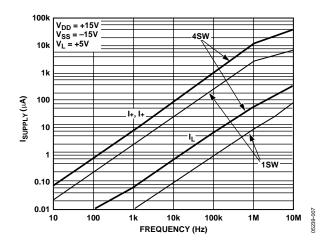


Figure 7. Supply Current vs. Input Switching Frequency

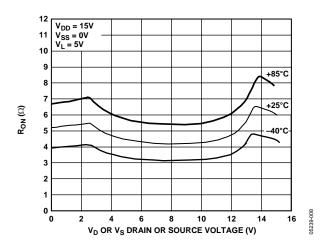


Figure 8. On Resistance as a Function of V_D (V_S) for Different Temperatures with Single Supplies

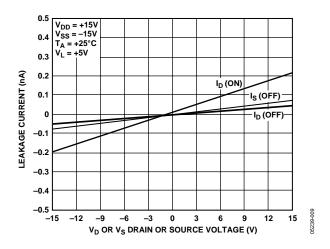


Figure 9. Leakage Currents as a Function of V_D (V_S)

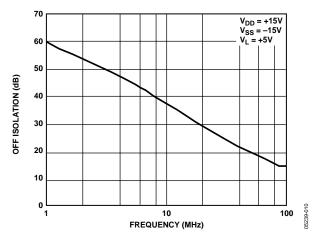


Figure 10. Off Isolation vs. Frequency

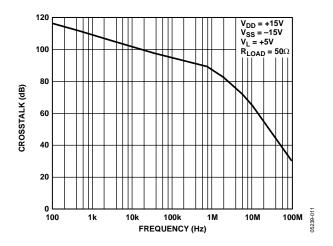


Figure 11. Crosstalk vs. Frequency

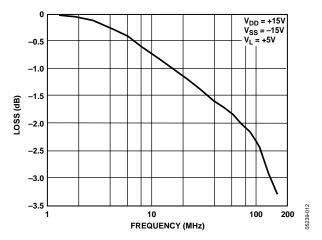


Figure 12. Frequency Response with Switch On

APPLICATIONS

Figure 13 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer, and the output operational amplifier is an AD711. During track mode, SW1 is closed and the output, V_{OUT} , follows the input signal, V_{IN} . In hold mode, SW1 is opened, and the signal is held by the hold capacitor, C_{H} .

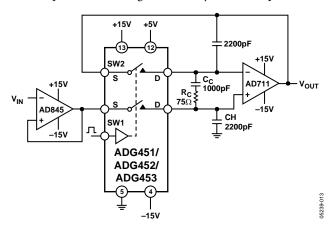


Figure 13. Fast, Accurate Sample-and-Hold Circuit

Due to switch and capacitor leakage, the voltage on the hold capacitor decreases with time. The ADG451/ADG452/ADG453 minimize this droop due to their low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 $\mu V/\mu s.$

A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Because both switches are at the same potential, they have a differential effect on the op amp, AD711, which minimizes charge injection effects. Pedestal error is also reduced by the compensation network, $R_{\rm C}$ and $C_{\rm C}$. This compensation network reduces the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

TEST CIRCUITS

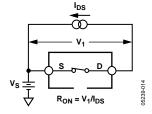


Figure 14. On Resistance

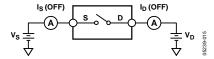


Figure 15. Off Leakage



Figure 16. On Leakage

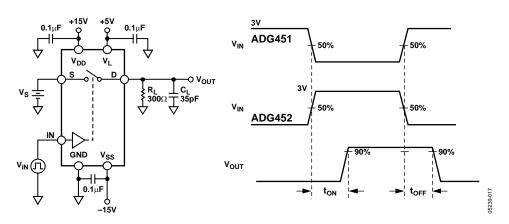


Figure 17. Switching Times

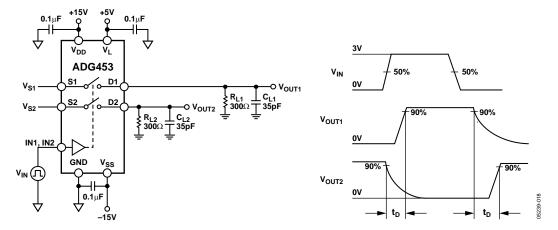


Figure 18. Break-Before-Make Time Delay

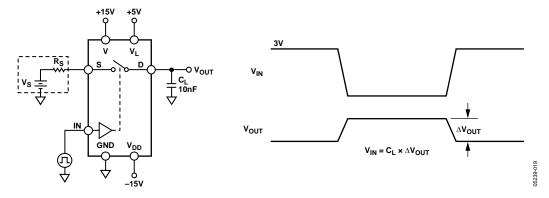


Figure 19. Charge Injection

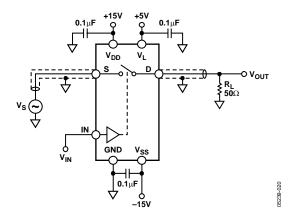
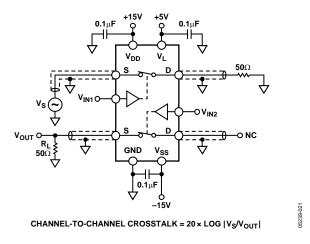
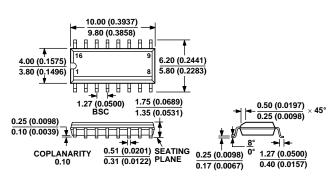
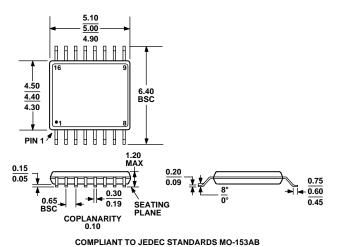


Figure 20. Off Isolation


Figure 21. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

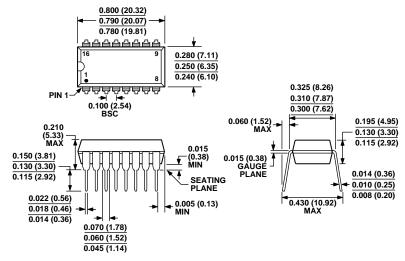

COMPLIANT TO JEDEC STANDARDS MS-012AC
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Figure 22. 16-lead Small Outline Package [SOIC] Narrow Body (R-16) Dimensions shown in millimeters and (inches)

COMI EIANT TO DEDEC CTANDARDO MO-133AB

Figure 23. 16-lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MS-001-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 24. 16-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Options
ADG451BN	-40°C to +85°C	16-Lead Plastic DIP	N-16
ADG451BNZ ¹	-40°C to +85°C	16-Lead Plastic DIP	N-16
ADG451BR	-40°C to +85°C	16-lead SOIC	R-16
ADG451BR-REEL	-40°C to +85°C	16-lead SOIC	R-16
ADG451BR-REEL7	-40°C to +85°C	16-lead SOIC	R-16
ADG451BRZ ¹	-40°C to +85°C	16-lead SOIC	R-16
ADG451BRUZ ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG451BRUZ- REEL ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG451BRUZ- REEL71	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG451BCHIPS		DIE	
ADG452BN	−40°C to +85°C	16-Lead Plastic DIP	N-16
ADG452BR	-40°C to +85°C	16-lead SOIC	R-16
ADG452BR-REEL	-40°C to +85°C	16-lead SOIC	R-16
ADG452BR-REEL7	-40°C to +85°C	16-lead SOIC	R-16
ADG452BRZ ¹	-40°C to +85°C	16-lead SOIC	R-16
ADG452BRZ-REEL ¹	-40°C to +85°C	16-lead SOIC	R-16
ADG452BRZ-REEL7 ¹	-40°C to +85°C	16-lead SOIC	R-16
ADG452BRUZ ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG452BRUZ-REEL ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG452BRUZ-REEL7 ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG453BN	−40°C to +85°C	16-Lead Plastic DIP	N-16
ADG453BR	-40°C to +85°C	16-lead SOIC	R-16
ADG453BR-REEL	-40°C to +85°C	16-lead SOIC	R-16
ADG453BR-REEL7	-40°C to +85°C	16-lead SOIC	R-16
ADG453BRZ ¹	-40°C to +85°C	16-lead SOIC	R-16
ADG453BRUZ ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG453BRUZ-REEL ¹	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG453BRUZ-REEL7 ¹	-40°C to +85°C	16-Lead TSSOP	RU-16

 $^{^{1}}$ Z = Pb-free part.

NOTES

NOTES

ADG451/ADG452/ADG453	
AUUTJ /AUUTJ//AUUTJJ	

NOTES

