ЭЛЕКТРИК 3,2021 ДАТЧИКИ

В статье впервые исследована и экспериментально подтверждена возможность обнаружения и идентификации в воздухе метана (СН4) и моно оксида углерода (СО) одним полупроводниковым сенсором при нагреве его чувствительного элемента на примере сенсора компании Figaro TGS2611. Для этого были введены и измерены новые параметры поведения сопротивления сенсора в процессе его нагрева и охлаждения. Также в процессе охлаждения сенсора было исследовано воздействие на параметр, характеризующий скорость изменения сопротивления его чувствительного элемента для различных концентраций метана и моно оксида углерода в воздухе.

О новом подходе к применению полупроводниковых сенсоров для обнаружения метана и моно оксида углерода

Юрий Хуташвили, Нузгар Иашвили, Грузинский Технический Университет, г. Тбилиси Юрий Коваль, Компания СЭА, г. Киев

Для полупроводниковых сенсоров обнаружения метана в воздухе жилого помещения, например, типа TGS2611, в справочной информации [1] приведены поведение сопротивления полупроводника сенсора для различных компонентов загазованности воздуха при постоянном режиме нагрева полупроводника чувствительного элемента. Известно, что при установившейся температуре свыше 400°С чувствительность сенсора к метану высокая, а к моно оксиду углерода — низкая [4].

Для обнаружения метана и моно оксида углерода одним полупроводниковым сенсором, например, TGS3780, в справочной информации [2] предложен периодически повторяющийся импульсный режим нагрева. В конце импульса нагрева измеряют сопротивление полупроводника сенсора, по значению которого определяют степень загазованности воздуха метаном. В конце паузы между импульсами нагрева производят измерение сопротивления полупроводника сенсора, повышенного вследствие его охлаждения, по значению которого судят о степени загазованности воздуха моно оксидом углерода.

Во всех известных методах обнаружения СН₄ и СО, в том числе для датчика TGS3870, метан измеряют при высокой температуре в пределах 400-500°С, а моно оксид углерода – при низкой температуре в пределах 80-90°С. В этих пределах находится точка максимальной чувствительности полупроводника к соответствующему газу. Непосредственный контроль температурного состояния полупроводника в детекторах утечки газа не представляется возможным. Поэтому максимальную точку чувствительности полагают по истечении установленных временных интервалов после начала импульса нагрева и после начала паузы.

Известно, что теоретические основы процессов физической адсорбции молекул газа на твердой поверхности

были заложены еще в 1930-е годы в положениях теории Ленгмюра. Естественно, что в процессе работы мы опирались на работы других ученых и специалистов, которые были доступны нам. Это и научные статьи, и диссертационные работы и доклады на научных конференциях, а также мнения высказанные при обсуждении наших тем в интернете.

Основная проблема

Основной проблемой достижения точности сигнализации является зависимость дрейфа точки минимального сопротивления сенсора от температуры и влажности, а также от временной деградации нагревательного элемента и полупроводника чувствительного элемента, в том числе, как в конце импульса нагрева, так и в конце паузы, что характерно для метода измерения, предлагаемого для TGS3870. Один из вариантов решения этой проблемы предложен в патенте [3], в котором концентрацию СО оценивают по отношению измеренных значений сопротивлений полупроводника сенсора в конце и в начале периода его охлажде-

ния, определяя, таким образом, скорость изменения сопротивления полупроводника чувствительного элемента сенсора.

Более глубокое изучение режима нагрева-охлаждения полупроводника сенсора, т.е. импульсного режима нагрева сенсора, было предпринято в Грузинском Техническом Университете (ГТУ), в котором предполагалась повышение точности измерения сопротивления полупроводника сенсора, с использованием разработанного 2-диапазонного линейного преобразователя его сопротивления.

В импульсном режиме нагрева сенсора температура его полупроводника изменяется от минимума до максимума, а при паузе — охлаждается до минимального значения. Исходя из источников [5, 6], предположили, что сорбированный в период паузы между импульсами нагрева в многослойную структуру пористого полупроводника сенсора СО тестируемого воздуха при высокой температуре (свыше 100°С) вступает в реакцию с молекулами H₂O сопутствующей влажности. В результате образуются CO₂ и H₂ [5, 6], что приводит к падению сопротивления полупроводника сенсора.

Одновременно, под воздействием нарастающей температуры по мере продвижения фронта максимальной температуры (400°С и выше) от поверхности нагревателя к периферийным слоям, полупроводник теряет влажность и интенсивность образования CO_2 и H_2 падает. Поэтому сопротивление полупроводника сенсора сначала достигает минимального значения R_{Min} под воздействием максимальной температуры и влажности, а затем по мере высушивания его слоёв сопротивление повышается до значения R_{Stab} (рис.1).

Необходимо отметить, что от величины паузы зависит глубина сорбции тестируемого воздуха, а от мощности и длительности импульса нагрева — чувствительность и скорость протекания процессов в пористой структуре полупроводника сенсора. Наиболее «растянуты» во времени эти процессы в многослойных полупроводниковых сенсорах, имеющих сравнительно большие объёмы чувствительных элементов. Их можно отличить по высоким справочным значениям потребляемой мощности нагревательного элемента.

Оптимальным решением при выборе полупроводникового сенсора оказался TGS2611-C00, характеризующийся приемлемой скоростью реакции, простотой схемы управления мощностью нагрева, удобством включения его в схему линейного преобразователя. Это позволяет без проблем осуществлять измерения сопротивления полупроводника сенсора и дифференциалы его изменения в течение всего процесса нагрева-охлаждения.

В сенсоре TGS3870, и в более современных TGS8100 и TGS8410, процессы при нагреве-охлаждении происходят значительно быстрее. Это связано с малыми размерами чувствительного элемента сенсора, которые диктуют существенные ограничения не только к мощности и длительности времени нагрева, но и к прилагаемому измерительному напряжению и длительности измерения. Поэтому, с имеющим

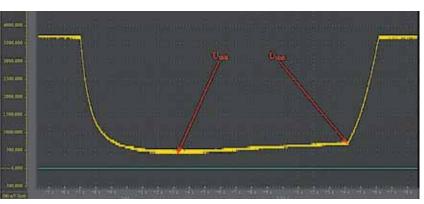


Рис. 1

справочным материалом на эти сенсоры, не представляется возможным непосредственно приступить к проверке нашей гипотезы без решения дополнительных проблем, связанных с проведением исследований и опытно-конструкторских разработок схем управления нагревательным элементом сенсора и его измерительной схемы.

В результате должны быть решены следующие вопросы:

- Подбор мощности нагрева, обеспечивающей приемлемое время продвижения фронта высокой температуры от слоёв полупроводника, непосредственно примыкающих к нагревательному элементу, к его периферийным слоям с целью получения приемлемой точности измерения сопротивления полупроводника и его производных по времени.
- Создание измерительной схемы сопротивления полупроводника сенсора с возможностью многократного его измерения на протяжении всего процесса нагреваохлаждения.

На рис.1 представлена осциллограмма сигнала напряжения на выходе линейного преобразователя сопротивления сенсора TGS2611-C00 при импульсном режиме нагрева мощностью 272 мВт в загазованном 80 ppm CO воздухе при температуре 22.2°С и влажности 34%.

На рис.2 представлен фрагмент осциллограммы участка охлаждения зависимости напряжения сигнала от времени на выходе линейного преобразователя сопротивления сенсора TGS2611 в период охлаждения при тестировании загазованного воздуха 300 ррт СО при температуре 22.9°С и влажности 99%. На рис.2 на участке 1 наиболее отчётливо проявляется наличие в структуре полупроводника накопленного водорода, вступающего в реакцию с кислородом воздуха. В результате экзотермической реакции замедляется охлаждение полупроводника и рост его сопротивления, что подтверждает правильность предположения протекающих в структуре полупроводника сенсора реакций, известных из источников [5, 6]. Вместе с этим, на участке 2 фрагмента осциллограммы на рис.2 наблюдался рост времени охлаждения ΔT в зоне низкой температуры полупроводника сенсора при наличии СО в тестируемом воздухе вследствие реакции с кислородом воздуха.

Проведенные исследования в ГТУ также были направлены на поиск решения проблемы компенсации дрейфа сопротивления полупроводника сенсора при изменении окружающей температуры, влажности, атмосферного давления и временной чувствительности сенсора.

ЭЛЕКТРИК 3,2021 ДАТЧИКИ

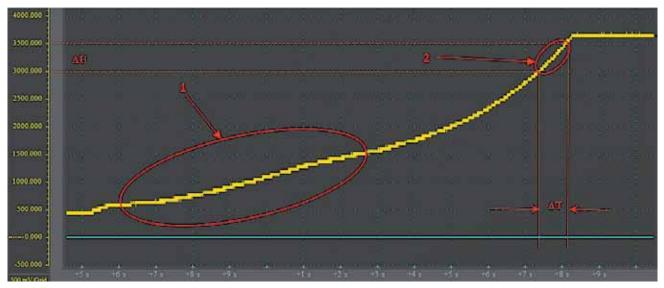


Рис.2

Исходя из вышеизложенного, цель исследования заключалась в поиске наиболее приемлемых параметров измерения и идентификации метана и моно оксида углерода одним полупроводниковым сенсором в режиме нагреваохлаждения.

Для достижения поставленной цели предметом исследования были обозначены следующие параметры:

- U_{Min} напряжение на выходе линейного преобразователя сопротивления сенсора при минимальном сопротивлении полупроводника сенсора R_{Min} в процессе его нагрева.
- U_{Stab} напряжение на выходе линейного преобразователя сопротивления сенсора при сопротивлении полупроводника сенсора R_{Stab}, измеренное в конце импульса нагрева.
- • ΔU разность сигналов U_{Stab}-U_{Min}, характеризующая рост сопротивления полупроводника сенсора при импульсе нагрева относительно его минимального сопротивления.
- β отношение сигналов U_{Min}/U_{MinAi}r, пропорциональное градиенту сопротивлений полупроводника сенсора в загазованном воздухе относительно его сопротивления в «чистом воздухе» (взят из источника [1, 2, 7, 8], только в сравнении с сопротивлением полупроводника в чистом воздухе).
- • АТ скорость охлаждения полупроводника сенсора в загазованном воздухе.
- γ коэффициент замедления скорости охлаждения полупроводника сенсора в загазованном воздухе в сравнении с скоростью охлаждения в чистом воздухе, равное $\Delta T/\Delta T_{Air}$.

Параметры R_{Min} и $\Delta R = R_{Stab}$ - R_{Min} тождественны параметрам U_{Min} и ΔU , так как последние измерены линейным преобразователем.

Также, необходимо пояснить, что после импульса нагрева происходит охлаждение сенсора. При этом длительность и темп охлаждения полупроводника сенсора зависит от текущего значения сопротивления его полупроводника. Если измерять ΔT в промежутке изменения сопротивления

полупроводника от 140 кОм до 165 кОм, то его значение характеризует скорость изменения времени охлаждения полупроводника сенсора, что тождественен дифференциалу функции времени охлаждения ΔT от аргумента ΔU (см. участок 2 на рис.2). Во избежание дальнейшей путаницы с исследуемым одноименным параметром ΔU и в связи с тем, что при конкретной реализации определения дифференциала задавались фиксированным шагом аргумента ΔU (см. участок 2 на рис.2), за скорость охлаждения полупроводника сенсора удобнее применять параметр ΔT .

В большинстве детекторов газа с применением полупроводникового сенсора для компенсации дрейфа его сопротивления по температуре применяют схему с терморезистором для каждого уровня сигнализации. Согласно EN50194-1 [9] возникает необходимость контроля предварительной и аварийной сигнализация загазованности метаном, а согласно требованиям европейского стандарта EN50291-1 [10] необходимо осуществлять многоуровневый контроль загазованности (уровни загазованности моно оксидом углерода 30 ррт, 50 ррт, 100 ррт и 300 ррт). Это существенно усложняет схему измерения.

Экспериментальная база и процедура

Экспериментальные исследования проводились в ГТУ с использованием испытательной камеры (ёмкости), с помещённой в неё измерительной схемой с полупроводниковым сенсором (рис.3).

На рис.3 обозначены:

- 1 ёмкость;
- 2 крышка ёмкости;
- 3 вентилятор;
- 4 комбинированный термометр с психрометром;
- 5 трубка подачи ПГС;
- 6 шприц;
- 7 измерительная схема;
- 8 сенсор:
- 9 линейный преобразователь сопротивления сенсора;
- 10 источник питания;
- 11 цифровой осциллограф.

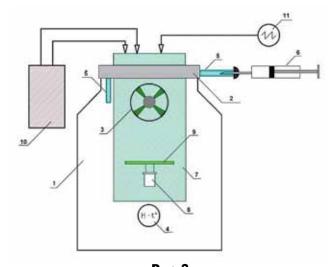


Рис.3

Выход линейного преобразователя сопротивления сенсора измерительной схемы выводился измерительным кабелем, к которому снаружи подключался цифровой осциллограф. В испытательную ёмкость соответствующими шприцами вводились поверочные газовые смеси (ПГС) метана и моно оксида углерода как раздельно, так и совместно. Для создания определённой концентрации вводимого газа руководствовались рекомендациями ISO6144:2003.

Объём (5100 мл) ёмкости 1, выполненной из стекла, был измерен методом её заполнения водой (удельный вес при температуре 20°C равен 0.99823) мерной колбой в

Рис.4

1000 мл±0.8 мл, а доза меньше 1000 мл была измерена с помощью весов. Для определения объёма воздуха, из величины 5100 мл вычли объёмы вентилятора (28 мл), измерительной схемы (21 мл), комбинированного термометра с психрометром (7 мл), суммарный объём проводов и трубок (14 мл) и добавлен объём пространства под крышкой (4 мл). В итоге объём воздуха для смешивания с ПГС составит 5034 мл.

В процессе работы были изготовлены несколько опытных образцов детектора с целью проведения испытаний в специализированных метрологических организациях, имеющих право проведения работ по определению соответствия параметров прибора международным стандартам.

Общий вид печатной платы с сенсором и контроллером нового инновационного детектора приведен на рис.4.

(Окончание следует)

Україна, 02094, м. Київ, вул. Краківська, 13-Б тел.: +38 044 291-00-41, факс: +38 044 291-00-42 info@sea.com.ua, www.sea.com.ua